Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048402525> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3048402525 endingPage "284" @default.
- W3048402525 startingPage "280" @default.
- W3048402525 abstract "The increase in population has led to increase in demand of automobiles across the globe. Concerns about the pollutants emitted from an engine are growing periodically. The paper has tried to show an exploratory review of the various methodologies adopted for accurately measuring and analysing exhaust engine emissions. The paper has the objective of showing the main conclusions of the recent research performed since last decade (2008 to 2020) for the above mentioned topic with the help of artificial intelligence methodologies. This review addresses an important application of artificial intelligence that can be applied in measuring the engine emissions. The measurement of these engine emissions are mandatory for every automobile company. This task is usually achieved by repeated testing of automobile which is not a cost efficient process. These process usually involves expensive test rigs installation. But predictive modeling for accurate testing of emissions can be used as a digital/virtual tool. Hence there is an extensive scope of research in this field. The paper has tried to showcase emerging trend of advanced machine learning algorithms that can easily help in generating emission data in a simple manner." @default.
- W3048402525 created "2020-08-18" @default.
- W3048402525 creator A5023152267 @default.
- W3048402525 creator A5038207917 @default.
- W3048402525 creator A5059811222 @default.
- W3048402525 creator A5065370009 @default.
- W3048402525 date "2021-01-01" @default.
- W3048402525 modified "2023-10-18" @default.
- W3048402525 title "Predictive modeling of engine emissions using machine learning: A review" @default.
- W3048402525 cites W1996122683 @default.
- W3048402525 cites W1998164713 @default.
- W3048402525 cites W2022018596 @default.
- W3048402525 cites W2053603122 @default.
- W3048402525 cites W2065510327 @default.
- W3048402525 cites W2117122519 @default.
- W3048402525 cites W2623486529 @default.
- W3048402525 cites W2910471782 @default.
- W3048402525 doi "https://doi.org/10.1016/j.matpr.2020.07.204" @default.
- W3048402525 hasPublicationYear "2021" @default.
- W3048402525 type Work @default.
- W3048402525 sameAs 3048402525 @default.
- W3048402525 citedByCount "16" @default.
- W3048402525 countsByYear W30484025252021 @default.
- W3048402525 countsByYear W30484025252022 @default.
- W3048402525 countsByYear W30484025252023 @default.
- W3048402525 crossrefType "journal-article" @default.
- W3048402525 hasAuthorship W3048402525A5023152267 @default.
- W3048402525 hasAuthorship W3048402525A5038207917 @default.
- W3048402525 hasAuthorship W3048402525A5059811222 @default.
- W3048402525 hasAuthorship W3048402525A5065370009 @default.
- W3048402525 hasConcept C111919701 @default.
- W3048402525 hasConcept C119857082 @default.
- W3048402525 hasConcept C127413603 @default.
- W3048402525 hasConcept C144024400 @default.
- W3048402525 hasConcept C146978453 @default.
- W3048402525 hasConcept C149923435 @default.
- W3048402525 hasConcept C171146098 @default.
- W3048402525 hasConcept C199360897 @default.
- W3048402525 hasConcept C201995342 @default.
- W3048402525 hasConcept C202444582 @default.
- W3048402525 hasConcept C2778012447 @default.
- W3048402525 hasConcept C2780451532 @default.
- W3048402525 hasConcept C2908647359 @default.
- W3048402525 hasConcept C33923547 @default.
- W3048402525 hasConcept C41008148 @default.
- W3048402525 hasConcept C526921623 @default.
- W3048402525 hasConcept C56238396 @default.
- W3048402525 hasConcept C9652623 @default.
- W3048402525 hasConcept C98045186 @default.
- W3048402525 hasConceptScore W3048402525C111919701 @default.
- W3048402525 hasConceptScore W3048402525C119857082 @default.
- W3048402525 hasConceptScore W3048402525C127413603 @default.
- W3048402525 hasConceptScore W3048402525C144024400 @default.
- W3048402525 hasConceptScore W3048402525C146978453 @default.
- W3048402525 hasConceptScore W3048402525C149923435 @default.
- W3048402525 hasConceptScore W3048402525C171146098 @default.
- W3048402525 hasConceptScore W3048402525C199360897 @default.
- W3048402525 hasConceptScore W3048402525C201995342 @default.
- W3048402525 hasConceptScore W3048402525C202444582 @default.
- W3048402525 hasConceptScore W3048402525C2778012447 @default.
- W3048402525 hasConceptScore W3048402525C2780451532 @default.
- W3048402525 hasConceptScore W3048402525C2908647359 @default.
- W3048402525 hasConceptScore W3048402525C33923547 @default.
- W3048402525 hasConceptScore W3048402525C41008148 @default.
- W3048402525 hasConceptScore W3048402525C526921623 @default.
- W3048402525 hasConceptScore W3048402525C56238396 @default.
- W3048402525 hasConceptScore W3048402525C9652623 @default.
- W3048402525 hasConceptScore W3048402525C98045186 @default.
- W3048402525 hasLocation W30484025251 @default.
- W3048402525 hasOpenAccess W3048402525 @default.
- W3048402525 hasPrimaryLocation W30484025251 @default.
- W3048402525 hasRelatedWork W2065583877 @default.
- W3048402525 hasRelatedWork W2119442507 @default.
- W3048402525 hasRelatedWork W2137973038 @default.
- W3048402525 hasRelatedWork W2263955162 @default.
- W3048402525 hasRelatedWork W2353869435 @default.
- W3048402525 hasRelatedWork W2359109991 @default.
- W3048402525 hasRelatedWork W2378204399 @default.
- W3048402525 hasRelatedWork W2587543912 @default.
- W3048402525 hasRelatedWork W3111502945 @default.
- W3048402525 hasRelatedWork W794121356 @default.
- W3048402525 hasVolume "38" @default.
- W3048402525 isParatext "false" @default.
- W3048402525 isRetracted "false" @default.
- W3048402525 magId "3048402525" @default.
- W3048402525 workType "article" @default.