Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048409881> ?p ?o ?g. }
- W3048409881 endingPage "2708" @default.
- W3048409881 startingPage "2693" @default.
- W3048409881 abstract "A new multi-step, hybrid artificial intelligence-based model is proposed to forecast future precipitation anomalies using relevant historical climate data coupled with large-scale climate oscillation features derived from the most relevant synoptic-scale climate mode indices. First, NSGA (non-dominated sorting genetic algorithm), as a feature selection strategy, is incorporated to search for statistically relevant inputs from climate data (temperature and humidity), sea-surface temperatures (Niño3, Niño3.4 and Niño4) and synoptic-scale indices (SOI, PDO, IOD, EMI, SAM). Next, the SVD (singular value decomposition) algorithm is applied to decompose all selected inputs, thus capturing the most relevant oscillatory features more clearly; then, the monthly lagged data are incorporated into a random forest model to generate future precipitation anomalies. The proposed model is applied in four districts of Pakistan and benchmarked by means of a standalone kernel ridge regression (KRR) model that is integrated with NSGA-SVD (hybrid NSGA-SVD-KRR) and the NSGA-RF and NSGA-KRR baseline models. Based on its high-predictive accuracy and versatility, the new model appears to be a pertinent tool for precipitation anomaly forecasting." @default.
- W3048409881 created "2020-08-18" @default.
- W3048409881 creator A5017193282 @default.
- W3048409881 creator A5037420527 @default.
- W3048409881 creator A5037953109 @default.
- W3048409881 creator A5051297830 @default.
- W3048409881 creator A5066626272 @default.
- W3048409881 date "2020-11-10" @default.
- W3048409881 modified "2023-10-15" @default.
- W3048409881 title "Forecasting long-term precipitation for water resource management: a new multi-step data-intelligent modelling approach" @default.
- W3048409881 cites W1132038451 @default.
- W3048409881 cites W1412975512 @default.
- W3048409881 cites W1600188168 @default.
- W3048409881 cites W176909285 @default.
- W3048409881 cites W1832221731 @default.
- W3048409881 cites W193601219 @default.
- W3048409881 cites W1967722715 @default.
- W3048409881 cites W1973994611 @default.
- W3048409881 cites W1981402026 @default.
- W3048409881 cites W1999461467 @default.
- W3048409881 cites W2001593107 @default.
- W3048409881 cites W2006572356 @default.
- W3048409881 cites W2007221293 @default.
- W3048409881 cites W2015053255 @default.
- W3048409881 cites W2015964844 @default.
- W3048409881 cites W2019900743 @default.
- W3048409881 cites W2023430894 @default.
- W3048409881 cites W2024531464 @default.
- W3048409881 cites W2033677518 @default.
- W3048409881 cites W2037308434 @default.
- W3048409881 cites W2038259075 @default.
- W3048409881 cites W2043613851 @default.
- W3048409881 cites W2044193427 @default.
- W3048409881 cites W2048156030 @default.
- W3048409881 cites W2059065188 @default.
- W3048409881 cites W2059477609 @default.
- W3048409881 cites W2061209835 @default.
- W3048409881 cites W2066939952 @default.
- W3048409881 cites W2067816887 @default.
- W3048409881 cites W2068735396 @default.
- W3048409881 cites W2069614204 @default.
- W3048409881 cites W2074501882 @default.
- W3048409881 cites W2074925211 @default.
- W3048409881 cites W2080739280 @default.
- W3048409881 cites W2082001988 @default.
- W3048409881 cites W2082382823 @default.
- W3048409881 cites W2083178128 @default.
- W3048409881 cites W2091690327 @default.
- W3048409881 cites W2093476958 @default.
- W3048409881 cites W2107697770 @default.
- W3048409881 cites W2114331883 @default.
- W3048409881 cites W2122588877 @default.
- W3048409881 cites W2124698328 @default.
- W3048409881 cites W2126105956 @default.
- W3048409881 cites W2130218971 @default.
- W3048409881 cites W2133420815 @default.
- W3048409881 cites W2143296882 @default.
- W3048409881 cites W2148541040 @default.
- W3048409881 cites W2153463079 @default.
- W3048409881 cites W2158638608 @default.
- W3048409881 cites W2166106382 @default.
- W3048409881 cites W2169921071 @default.
- W3048409881 cites W2172396350 @default.
- W3048409881 cites W2262639697 @default.
- W3048409881 cites W2346573641 @default.
- W3048409881 cites W2536008880 @default.
- W3048409881 cites W2607283161 @default.
- W3048409881 cites W2664331661 @default.
- W3048409881 cites W2733685621 @default.
- W3048409881 cites W2738574859 @default.
- W3048409881 cites W2748606210 @default.
- W3048409881 cites W2791283728 @default.
- W3048409881 cites W2802958163 @default.
- W3048409881 cites W2871832352 @default.
- W3048409881 cites W2889594674 @default.
- W3048409881 cites W2911964244 @default.
- W3048409881 cites W2952482886 @default.
- W3048409881 cites W2987880018 @default.
- W3048409881 cites W3004203398 @default.
- W3048409881 cites W3104989610 @default.
- W3048409881 cites W3176603840 @default.
- W3048409881 cites W4212883601 @default.
- W3048409881 cites W4241124714 @default.
- W3048409881 cites W969525172 @default.
- W3048409881 doi "https://doi.org/10.1080/02626667.2020.1808219" @default.
- W3048409881 hasPublicationYear "2020" @default.
- W3048409881 type Work @default.
- W3048409881 sameAs 3048409881 @default.
- W3048409881 citedByCount "8" @default.
- W3048409881 countsByYear W30484098812021 @default.
- W3048409881 countsByYear W30484098812022 @default.
- W3048409881 countsByYear W30484098812023 @default.
- W3048409881 crossrefType "journal-article" @default.
- W3048409881 hasAuthorship W3048409881A5017193282 @default.
- W3048409881 hasAuthorship W3048409881A5037420527 @default.
- W3048409881 hasAuthorship W3048409881A5037953109 @default.
- W3048409881 hasAuthorship W3048409881A5051297830 @default.
- W3048409881 hasAuthorship W3048409881A5066626272 @default.