Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048442316> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3048442316 endingPage "105702" @default.
- W3048442316 startingPage "105702" @default.
- W3048442316 abstract "Background and objectives: Toxicity testing is an important step for developing new drugs, and animals are widely used in this step by exposing them to the toxicants. Zebrafishes are widely used for measuring and detecting the toxicity. However, measuring and testing toxicity manually is not feasible due to the large number of embryos. This work presents an automated model to investigate the toxicity of two toxicants (3, 4-Dichloroaniline (34DCA) and p-Tert-Butylphenol (PTBP)). Methods: The proposed model consists of two steps. In the first step, a set of features is extracted from microscopic images of zebrafish embryos using the Segmentation-Based Fractal Texture Analysis (SFTA) technique. Secondly, a novel rough set-based model using Social ski-driver (SSD) is used to find a global minimal subset of features that preserves important information of the original features. In the third step, the AdaBoost classifier is used to classify an unknown sample to alive or coagulant after exposing the embryo to a toxic compound. Results: For detecting the toxicity, the proposed model is compared with (i) three deterministic rough set reduction algorithms and (ii) the PSO-based algorithm. The classification performance rate of our model was ranged from 97.1% to 99.5% and it outperformed the other algorithms. Conclusions: The results of our experiments proved that the proposed drug toxicity model is efficient for rough set-based feature selection and it obtains a high classification performance." @default.
- W3048442316 created "2020-08-18" @default.
- W3048442316 creator A5002695418 @default.
- W3048442316 creator A5051932112 @default.
- W3048442316 creator A5080314108 @default.
- W3048442316 date "2020-12-01" @default.
- W3048442316 modified "2023-10-17" @default.
- W3048442316 title "Rough sets and social ski-driver optimization for drug toxicity analysis" @default.
- W3048442316 cites W1963626514 @default.
- W3048442316 cites W1982141954 @default.
- W3048442316 cites W1983380373 @default.
- W3048442316 cites W1989337141 @default.
- W3048442316 cites W1993130981 @default.
- W3048442316 cites W2016833694 @default.
- W3048442316 cites W2022237253 @default.
- W3048442316 cites W2050702451 @default.
- W3048442316 cites W2061438946 @default.
- W3048442316 cites W2076454423 @default.
- W3048442316 cites W2083080778 @default.
- W3048442316 cites W2083229403 @default.
- W3048442316 cites W2133768972 @default.
- W3048442316 cites W2174337267 @default.
- W3048442316 cites W2192916535 @default.
- W3048442316 cites W2199930758 @default.
- W3048442316 cites W2232317135 @default.
- W3048442316 cites W2261633870 @default.
- W3048442316 doi "https://doi.org/10.1016/j.cmpb.2020.105702" @default.
- W3048442316 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32818915" @default.
- W3048442316 hasPublicationYear "2020" @default.
- W3048442316 type Work @default.
- W3048442316 sameAs 3048442316 @default.
- W3048442316 citedByCount "6" @default.
- W3048442316 countsByYear W30484423162020 @default.
- W3048442316 countsByYear W30484423162021 @default.
- W3048442316 countsByYear W30484423162022 @default.
- W3048442316 countsByYear W30484423162023 @default.
- W3048442316 crossrefType "journal-article" @default.
- W3048442316 hasAuthorship W3048442316A5002695418 @default.
- W3048442316 hasAuthorship W3048442316A5051932112 @default.
- W3048442316 hasAuthorship W3048442316A5080314108 @default.
- W3048442316 hasConcept C141404830 @default.
- W3048442316 hasConcept C148483581 @default.
- W3048442316 hasConcept C153180895 @default.
- W3048442316 hasConcept C154945302 @default.
- W3048442316 hasConcept C178790620 @default.
- W3048442316 hasConcept C185592680 @default.
- W3048442316 hasConcept C29730261 @default.
- W3048442316 hasConcept C41008148 @default.
- W3048442316 hasConcept C89600930 @default.
- W3048442316 hasConcept C95623464 @default.
- W3048442316 hasConceptScore W3048442316C141404830 @default.
- W3048442316 hasConceptScore W3048442316C148483581 @default.
- W3048442316 hasConceptScore W3048442316C153180895 @default.
- W3048442316 hasConceptScore W3048442316C154945302 @default.
- W3048442316 hasConceptScore W3048442316C178790620 @default.
- W3048442316 hasConceptScore W3048442316C185592680 @default.
- W3048442316 hasConceptScore W3048442316C29730261 @default.
- W3048442316 hasConceptScore W3048442316C41008148 @default.
- W3048442316 hasConceptScore W3048442316C89600930 @default.
- W3048442316 hasConceptScore W3048442316C95623464 @default.
- W3048442316 hasLocation W30484423161 @default.
- W3048442316 hasOpenAccess W3048442316 @default.
- W3048442316 hasPrimaryLocation W30484423161 @default.
- W3048442316 hasRelatedWork W2003125512 @default.
- W3048442316 hasRelatedWork W2086982548 @default.
- W3048442316 hasRelatedWork W2115296911 @default.
- W3048442316 hasRelatedWork W2161913251 @default.
- W3048442316 hasRelatedWork W2366506455 @default.
- W3048442316 hasRelatedWork W2563096758 @default.
- W3048442316 hasRelatedWork W2951715702 @default.
- W3048442316 hasRelatedWork W4386053843 @default.
- W3048442316 hasRelatedWork W2345184372 @default.
- W3048442316 hasRelatedWork W3158004940 @default.
- W3048442316 hasVolume "197" @default.
- W3048442316 isParatext "false" @default.
- W3048442316 isRetracted "false" @default.
- W3048442316 magId "3048442316" @default.
- W3048442316 workType "article" @default.