Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048444816> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3048444816 endingPage "257" @default.
- W3048444816 startingPage "249" @default.
- W3048444816 abstract "Botnet attacks are the new threat in the world of cyber security. In the last few years with the rapid growth of IoT based Technology and networking systems connecting large number of devices, attackers can deploy bots on the network and perform large scale cyber-attacks which can affect anything from millions of personal computers to large scale organizations. Hence, there is a necessity to implement countermeasures to over-come botnet attacks. In this paper, three hybrid models are proposed which are developed by integrating multiple machine learning algorithms like Random Forest (RF), Support Vector Machine (SVM), Naive Bayes (NB), K-Nearest Neighbor (KNN) and Linear Regression (LR). According to our experimental analysis, the RF-SVM has the highest accuracy (85.34%) followed by RF-NB-K-NN (83.36%) and RF-KNN-LR (79.56%)." @default.
- W3048444816 created "2020-08-18" @default.
- W3048444816 creator A5024640615 @default.
- W3048444816 creator A5038704473 @default.
- W3048444816 creator A5067002514 @default.
- W3048444816 creator A5085408978 @default.
- W3048444816 date "2020-08-13" @default.
- W3048444816 modified "2023-10-16" @default.
- W3048444816 title "Identification of Botnet Attacks Using Hybrid Machine Learning Models" @default.
- W3048444816 cites W1561047780 @default.
- W3048444816 cites W1586284606 @default.
- W3048444816 cites W1976262362 @default.
- W3048444816 cites W2026621111 @default.
- W3048444816 cites W2031163547 @default.
- W3048444816 cites W2073119119 @default.
- W3048444816 cites W2137345105 @default.
- W3048444816 cites W2360903897 @default.
- W3048444816 cites W2498302240 @default.
- W3048444816 cites W2534270843 @default.
- W3048444816 cites W2559341072 @default.
- W3048444816 cites W2579847648 @default.
- W3048444816 cites W2586432806 @default.
- W3048444816 cites W2612437872 @default.
- W3048444816 cites W2736183220 @default.
- W3048444816 cites W2755021152 @default.
- W3048444816 cites W2907516583 @default.
- W3048444816 cites W2946987024 @default.
- W3048444816 cites W3105750153 @default.
- W3048444816 doi "https://doi.org/10.1007/978-3-030-49336-3_25" @default.
- W3048444816 hasPublicationYear "2020" @default.
- W3048444816 type Work @default.
- W3048444816 sameAs 3048444816 @default.
- W3048444816 citedByCount "3" @default.
- W3048444816 countsByYear W30484448162021 @default.
- W3048444816 crossrefType "book-chapter" @default.
- W3048444816 hasAuthorship W3048444816A5024640615 @default.
- W3048444816 hasAuthorship W3048444816A5038704473 @default.
- W3048444816 hasAuthorship W3048444816A5067002514 @default.
- W3048444816 hasAuthorship W3048444816A5085408978 @default.
- W3048444816 hasConcept C110875604 @default.
- W3048444816 hasConcept C116834253 @default.
- W3048444816 hasConcept C119857082 @default.
- W3048444816 hasConcept C136764020 @default.
- W3048444816 hasConcept C154945302 @default.
- W3048444816 hasConcept C18903297 @default.
- W3048444816 hasConcept C22735295 @default.
- W3048444816 hasConcept C41008148 @default.
- W3048444816 hasConcept C86803240 @default.
- W3048444816 hasConceptScore W3048444816C110875604 @default.
- W3048444816 hasConceptScore W3048444816C116834253 @default.
- W3048444816 hasConceptScore W3048444816C119857082 @default.
- W3048444816 hasConceptScore W3048444816C136764020 @default.
- W3048444816 hasConceptScore W3048444816C154945302 @default.
- W3048444816 hasConceptScore W3048444816C18903297 @default.
- W3048444816 hasConceptScore W3048444816C22735295 @default.
- W3048444816 hasConceptScore W3048444816C41008148 @default.
- W3048444816 hasConceptScore W3048444816C86803240 @default.
- W3048444816 hasLocation W30484448161 @default.
- W3048444816 hasOpenAccess W3048444816 @default.
- W3048444816 hasPrimaryLocation W30484448161 @default.
- W3048444816 hasRelatedWork W2116264289 @default.
- W3048444816 hasRelatedWork W2961085424 @default.
- W3048444816 hasRelatedWork W2966214489 @default.
- W3048444816 hasRelatedWork W3046775127 @default.
- W3048444816 hasRelatedWork W4200163930 @default.
- W3048444816 hasRelatedWork W4205958290 @default.
- W3048444816 hasRelatedWork W4286629047 @default.
- W3048444816 hasRelatedWork W4306321456 @default.
- W3048444816 hasRelatedWork W4306674287 @default.
- W3048444816 hasRelatedWork W4224009465 @default.
- W3048444816 isParatext "false" @default.
- W3048444816 isRetracted "false" @default.
- W3048444816 magId "3048444816" @default.
- W3048444816 workType "book-chapter" @default.