Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048444863> ?p ?o ?g. }
- W3048444863 endingPage "2412" @default.
- W3048444863 startingPage "2405" @default.
- W3048444863 abstract "To assess whether machine learning methods provide advantage over classic statistical modeling for the prediction of IVF outcomes. The study population consisted of 136 women undergoing a fresh IVF cycle from January 2014 to August 2016 at a tertiary, university-affiliated medical center. We tested the ability of two machine learning algorithms, support vector machine (SVM) and artificial neural network (NN), vs. classic statistics (logistic regression) to predict IVF outcomes (number of oocytes retrieved, mature oocytes, top-quality embryos, positive beta-hCG, clinical pregnancies, and live births) based on age and BMI, with or without clinical data. Machine learning algorithms (SVM and NN) based on age, BMI, and clinical features yielded better performances in predicting number of oocytes retrieved, mature oocytes, fertilized oocytes, top-quality embryos, positive beta-hCG, clinical pregnancies, and live births, compared with logistic regression models. While accuracies were 0.69 to 0.9 and 0.45 to 0.77 for NN and SVM, respectively, they were 0.34 to 0.74 using logistic regression models. Our findings suggest that machine learning algorithms based on age, BMI, and clinical data have an advantage over logistic regression for the prediction of IVF outcomes and therefore can assist fertility specialists’ counselling and their patients in adjusting the appropriate treatment strategy." @default.
- W3048444863 created "2020-08-18" @default.
- W3048444863 creator A5000024326 @default.
- W3048444863 creator A5004383338 @default.
- W3048444863 creator A5014337179 @default.
- W3048444863 creator A5017911709 @default.
- W3048444863 creator A5040907031 @default.
- W3048444863 creator A5055965118 @default.
- W3048444863 creator A5068827723 @default.
- W3048444863 creator A5069636788 @default.
- W3048444863 creator A5078477921 @default.
- W3048444863 creator A5088655691 @default.
- W3048444863 date "2020-08-11" @default.
- W3048444863 modified "2023-10-18" @default.
- W3048444863 title "Machine learning vs. classic statistics for the prediction of IVF outcomes" @default.
- W3048444863 cites W2031025607 @default.
- W3048444863 cites W2083721794 @default.
- W3048444863 cites W2156133368 @default.
- W3048444863 cites W2171038270 @default.
- W3048444863 cites W2177870565 @default.
- W3048444863 cites W2525984666 @default.
- W3048444863 cites W2768795169 @default.
- W3048444863 cites W2773799331 @default.
- W3048444863 cites W2805929230 @default.
- W3048444863 cites W2907479062 @default.
- W3048444863 cites W2914791064 @default.
- W3048444863 cites W2927960701 @default.
- W3048444863 cites W2947376579 @default.
- W3048444863 cites W2950835975 @default.
- W3048444863 cites W3003020063 @default.
- W3048444863 doi "https://doi.org/10.1007/s10815-020-01908-1" @default.
- W3048444863 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7550518" @default.
- W3048444863 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32783138" @default.
- W3048444863 hasPublicationYear "2020" @default.
- W3048444863 type Work @default.
- W3048444863 sameAs 3048444863 @default.
- W3048444863 citedByCount "21" @default.
- W3048444863 countsByYear W30484448632020 @default.
- W3048444863 countsByYear W30484448632021 @default.
- W3048444863 countsByYear W30484448632022 @default.
- W3048444863 countsByYear W30484448632023 @default.
- W3048444863 crossrefType "journal-article" @default.
- W3048444863 hasAuthorship W3048444863A5000024326 @default.
- W3048444863 hasAuthorship W3048444863A5004383338 @default.
- W3048444863 hasAuthorship W3048444863A5014337179 @default.
- W3048444863 hasAuthorship W3048444863A5017911709 @default.
- W3048444863 hasAuthorship W3048444863A5040907031 @default.
- W3048444863 hasAuthorship W3048444863A5055965118 @default.
- W3048444863 hasAuthorship W3048444863A5068827723 @default.
- W3048444863 hasAuthorship W3048444863A5069636788 @default.
- W3048444863 hasAuthorship W3048444863A5078477921 @default.
- W3048444863 hasAuthorship W3048444863A5088655691 @default.
- W3048444863 hasBestOaLocation W30484448632 @default.
- W3048444863 hasConcept C105795698 @default.
- W3048444863 hasConcept C119857082 @default.
- W3048444863 hasConcept C12267149 @default.
- W3048444863 hasConcept C151956035 @default.
- W3048444863 hasConcept C154945302 @default.
- W3048444863 hasConcept C2776210078 @default.
- W3048444863 hasConcept C2779234561 @default.
- W3048444863 hasConcept C2908647359 @default.
- W3048444863 hasConcept C29456083 @default.
- W3048444863 hasConcept C33923547 @default.
- W3048444863 hasConcept C41008148 @default.
- W3048444863 hasConcept C54355233 @default.
- W3048444863 hasConcept C71924100 @default.
- W3048444863 hasConcept C86803240 @default.
- W3048444863 hasConcept C99454951 @default.
- W3048444863 hasConceptScore W3048444863C105795698 @default.
- W3048444863 hasConceptScore W3048444863C119857082 @default.
- W3048444863 hasConceptScore W3048444863C12267149 @default.
- W3048444863 hasConceptScore W3048444863C151956035 @default.
- W3048444863 hasConceptScore W3048444863C154945302 @default.
- W3048444863 hasConceptScore W3048444863C2776210078 @default.
- W3048444863 hasConceptScore W3048444863C2779234561 @default.
- W3048444863 hasConceptScore W3048444863C2908647359 @default.
- W3048444863 hasConceptScore W3048444863C29456083 @default.
- W3048444863 hasConceptScore W3048444863C33923547 @default.
- W3048444863 hasConceptScore W3048444863C41008148 @default.
- W3048444863 hasConceptScore W3048444863C54355233 @default.
- W3048444863 hasConceptScore W3048444863C71924100 @default.
- W3048444863 hasConceptScore W3048444863C86803240 @default.
- W3048444863 hasConceptScore W3048444863C99454951 @default.
- W3048444863 hasFunder F4320324818 @default.
- W3048444863 hasFunder F4320332161 @default.
- W3048444863 hasIssue "10" @default.
- W3048444863 hasLocation W30484448631 @default.
- W3048444863 hasLocation W30484448632 @default.
- W3048444863 hasLocation W30484448633 @default.
- W3048444863 hasOpenAccess W3048444863 @default.
- W3048444863 hasPrimaryLocation W30484448631 @default.
- W3048444863 hasRelatedWork W1996541855 @default.
- W3048444863 hasRelatedWork W2129863591 @default.
- W3048444863 hasRelatedWork W2355927362 @default.
- W3048444863 hasRelatedWork W2554948173 @default.
- W3048444863 hasRelatedWork W2961085424 @default.
- W3048444863 hasRelatedWork W3195168932 @default.
- W3048444863 hasRelatedWork W4316658362 @default.