Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048446218> ?p ?o ?g. }
- W3048446218 endingPage "152522" @default.
- W3048446218 startingPage "152512" @default.
- W3048446218 abstract "How to limit the drifts of the navigation errors in an inertial navigation system (INS) with low-cost sensors is one of the main challenges for the land vehicle navigations. In this paper, we present a novel hybrid navigation strategy to integrate the Micro-Electric-Mechanic-systems (MEMS) INS, odometer (OD) and global navigation satellite systems (GNSS), with aim to enhance the positioning accuracy of the inertial system during GNSS outages. To accurately estimate the INS error states, the neural network (NN) is proposed to mimic the velocity of the navigation frame with the data from the MEMS INS, odometer, as well as the non-holonomic constraints (NHC). The long short-term memory (LSTM) NN is adopted in our approach due to its ability to adaptively use the data in the past. The road tests are conducted with two different MEMS IMUs to verify the proposed navigation strategy. Comparing to the traditional integrated MEMS INS/OD/GNSS system based on the extended Kalman filtering (EKF), our hybrid approach provides over 60% improvements in terms of the root mean square (RMS) and maximum horizontal position errors during GNSS outages." @default.
- W3048446218 created "2020-08-18" @default.
- W3048446218 creator A5037746587 @default.
- W3048446218 creator A5084939652 @default.
- W3048446218 creator A5089729384 @default.
- W3048446218 date "2020-01-01" @default.
- W3048446218 modified "2023-10-18" @default.
- W3048446218 title "A Hybrid Fusion Strategy for the Land Vehicle Navigation Using MEMS INS, Odometer and GNSS" @default.
- W3048446218 cites W1968568564 @default.
- W3048446218 cites W1975736790 @default.
- W3048446218 cites W1977792982 @default.
- W3048446218 cites W2000997774 @default.
- W3048446218 cites W2004353783 @default.
- W3048446218 cites W2013054356 @default.
- W3048446218 cites W2015884743 @default.
- W3048446218 cites W2023857726 @default.
- W3048446218 cites W2034059570 @default.
- W3048446218 cites W2044115878 @default.
- W3048446218 cites W2076414096 @default.
- W3048446218 cites W2076616500 @default.
- W3048446218 cites W2076924667 @default.
- W3048446218 cites W2097966892 @default.
- W3048446218 cites W2100749625 @default.
- W3048446218 cites W2129384863 @default.
- W3048446218 cites W2131040183 @default.
- W3048446218 cites W2131420149 @default.
- W3048446218 cites W2137463152 @default.
- W3048446218 cites W2151611062 @default.
- W3048446218 cites W2160626949 @default.
- W3048446218 cites W2316125921 @default.
- W3048446218 cites W2514550022 @default.
- W3048446218 cites W2523351019 @default.
- W3048446218 cites W2558099083 @default.
- W3048446218 cites W2560074472 @default.
- W3048446218 cites W2586283453 @default.
- W3048446218 cites W2587647538 @default.
- W3048446218 cites W2736332163 @default.
- W3048446218 cites W2766230936 @default.
- W3048446218 cites W2783204403 @default.
- W3048446218 cites W2794091565 @default.
- W3048446218 cites W2796417323 @default.
- W3048446218 cites W2796912150 @default.
- W3048446218 cites W2798069802 @default.
- W3048446218 cites W2801667201 @default.
- W3048446218 cites W2885500077 @default.
- W3048446218 cites W2914948944 @default.
- W3048446218 cites W2945065450 @default.
- W3048446218 cites W2945257394 @default.
- W3048446218 cites W2999466041 @default.
- W3048446218 doi "https://doi.org/10.1109/access.2020.3016004" @default.
- W3048446218 hasPublicationYear "2020" @default.
- W3048446218 type Work @default.
- W3048446218 sameAs 3048446218 @default.
- W3048446218 citedByCount "9" @default.
- W3048446218 countsByYear W30484462182021 @default.
- W3048446218 countsByYear W30484462182022 @default.
- W3048446218 countsByYear W30484462182023 @default.
- W3048446218 crossrefType "journal-article" @default.
- W3048446218 hasAuthorship W3048446218A5037746587 @default.
- W3048446218 hasAuthorship W3048446218A5084939652 @default.
- W3048446218 hasAuthorship W3048446218A5089729384 @default.
- W3048446218 hasBestOaLocation W30484462181 @default.
- W3048446218 hasConcept C121332964 @default.
- W3048446218 hasConcept C128651787 @default.
- W3048446218 hasConcept C14279187 @default.
- W3048446218 hasConcept C154945302 @default.
- W3048446218 hasConcept C157286648 @default.
- W3048446218 hasConcept C166212672 @default.
- W3048446218 hasConcept C173386949 @default.
- W3048446218 hasConcept C206833254 @default.
- W3048446218 hasConcept C2777891301 @default.
- W3048446218 hasConcept C33954974 @default.
- W3048446218 hasConcept C41008148 @default.
- W3048446218 hasConcept C504623915 @default.
- W3048446218 hasConcept C60229501 @default.
- W3048446218 hasConcept C62520636 @default.
- W3048446218 hasConcept C76155785 @default.
- W3048446218 hasConcept C79061980 @default.
- W3048446218 hasConcept C79403827 @default.
- W3048446218 hasConcept C93717769 @default.
- W3048446218 hasConceptScore W3048446218C121332964 @default.
- W3048446218 hasConceptScore W3048446218C128651787 @default.
- W3048446218 hasConceptScore W3048446218C14279187 @default.
- W3048446218 hasConceptScore W3048446218C154945302 @default.
- W3048446218 hasConceptScore W3048446218C157286648 @default.
- W3048446218 hasConceptScore W3048446218C166212672 @default.
- W3048446218 hasConceptScore W3048446218C173386949 @default.
- W3048446218 hasConceptScore W3048446218C206833254 @default.
- W3048446218 hasConceptScore W3048446218C2777891301 @default.
- W3048446218 hasConceptScore W3048446218C33954974 @default.
- W3048446218 hasConceptScore W3048446218C41008148 @default.
- W3048446218 hasConceptScore W3048446218C504623915 @default.
- W3048446218 hasConceptScore W3048446218C60229501 @default.
- W3048446218 hasConceptScore W3048446218C62520636 @default.
- W3048446218 hasConceptScore W3048446218C76155785 @default.
- W3048446218 hasConceptScore W3048446218C79061980 @default.
- W3048446218 hasConceptScore W3048446218C79403827 @default.
- W3048446218 hasConceptScore W3048446218C93717769 @default.