Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048447490> ?p ?o ?g. }
- W3048447490 endingPage "146639" @default.
- W3048447490 startingPage "146627" @default.
- W3048447490 abstract "Remote sensing image segmentation is a challenging task in remote sensing image analysis. Remote sensing image segmentation has great significance in urban planning, crop planting, and other fields that need plentiful information about the land. Technically, this task suffers from the ultra-high resolution, large shooting angle, and feature complexity of the remote sensing images. To address these issues, we propose a deep learning-based network called ATD-LinkNet with several customized modules. Specifically, we propose a replaceable module named AT block using multi-scale convolution and attention mechanism as the building block in ATD-LinkNet. AT block fuses different scale features and effectively utilizes the abundant spatial and semantic information in remote sensing images. To refine the nonlinear boundaries of internal objects in remote sensing images, we adopt the dense upsampling convolution in the decoder part of ATD-LinkNet. Experimentally, we enforce sufficient comparative experiments on two public remote sensing datasets (Potsdam and DeepGlobe Road Extraction). The results show our ATD-LinkNet achieves better performance against most state-of-the-art networks. We obtain 89.0% for pixel-level accuracy in the Potsdam dataset and 62.68% for mean Intersection over Union in the DeepGlobe Road Extraction dataset." @default.
- W3048447490 created "2020-08-18" @default.
- W3048447490 creator A5026841385 @default.
- W3048447490 creator A5032024992 @default.
- W3048447490 creator A5049267992 @default.
- W3048447490 creator A5060888636 @default.
- W3048447490 creator A5084960489 @default.
- W3048447490 date "2020-01-01" @default.
- W3048447490 modified "2023-10-16" @default.
- W3048447490 title "Deep Attention and Multi-Scale Networks for Accurate Remote Sensing Image Segmentation" @default.
- W3048447490 cites W1591388113 @default.
- W3048447490 cites W1903029394 @default.
- W3048447490 cites W1905829557 @default.
- W3048447490 cites W1948751323 @default.
- W3048447490 cites W1998399571 @default.
- W3048447490 cites W2050515269 @default.
- W3048447490 cites W2065800647 @default.
- W3048447490 cites W2092698241 @default.
- W3048447490 cites W2098758111 @default.
- W3048447490 cites W2102673432 @default.
- W3048447490 cites W2105090634 @default.
- W3048447490 cites W2127786001 @default.
- W3048447490 cites W2161969291 @default.
- W3048447490 cites W2218047931 @default.
- W3048447490 cites W2412588858 @default.
- W3048447490 cites W2480078828 @default.
- W3048447490 cites W2512351403 @default.
- W3048447490 cites W2521187057 @default.
- W3048447490 cites W2531409750 @default.
- W3048447490 cites W2538244214 @default.
- W3048447490 cites W2592939477 @default.
- W3048447490 cites W2604086375 @default.
- W3048447490 cites W2615237590 @default.
- W3048447490 cites W2616755213 @default.
- W3048447490 cites W2738232694 @default.
- W3048447490 cites W2752782242 @default.
- W3048447490 cites W2760340275 @default.
- W3048447490 cites W2777687226 @default.
- W3048447490 cites W2785559537 @default.
- W3048447490 cites W2794948653 @default.
- W3048447490 cites W2804199516 @default.
- W3048447490 cites W2890859091 @default.
- W3048447490 cites W2893801697 @default.
- W3048447490 cites W2896446634 @default.
- W3048447490 cites W2900663475 @default.
- W3048447490 cites W2900680440 @default.
- W3048447490 cites W2901082355 @default.
- W3048447490 cites W2902820206 @default.
- W3048447490 cites W2913014488 @default.
- W3048447490 cites W2951260535 @default.
- W3048447490 cites W2957379697 @default.
- W3048447490 cites W2962850830 @default.
- W3048447490 cites W2962891704 @default.
- W3048447490 cites W2963091558 @default.
- W3048447490 cites W2963125010 @default.
- W3048447490 cites W2963495494 @default.
- W3048447490 cites W2963881378 @default.
- W3048447490 cites W2963948108 @default.
- W3048447490 cites W2964081807 @default.
- W3048447490 cites W2964164961 @default.
- W3048447490 cites W2974589600 @default.
- W3048447490 cites W3099663315 @default.
- W3048447490 cites W3105127913 @default.
- W3048447490 cites W3105636206 @default.
- W3048447490 doi "https://doi.org/10.1109/access.2020.3015587" @default.
- W3048447490 hasPublicationYear "2020" @default.
- W3048447490 type Work @default.
- W3048447490 sameAs 3048447490 @default.
- W3048447490 citedByCount "27" @default.
- W3048447490 countsByYear W30484474902020 @default.
- W3048447490 countsByYear W30484474902021 @default.
- W3048447490 countsByYear W30484474902022 @default.
- W3048447490 countsByYear W30484474902023 @default.
- W3048447490 crossrefType "journal-article" @default.
- W3048447490 hasAuthorship W3048447490A5026841385 @default.
- W3048447490 hasAuthorship W3048447490A5032024992 @default.
- W3048447490 hasAuthorship W3048447490A5049267992 @default.
- W3048447490 hasAuthorship W3048447490A5060888636 @default.
- W3048447490 hasAuthorship W3048447490A5084960489 @default.
- W3048447490 hasBestOaLocation W30484474901 @default.
- W3048447490 hasConcept C110384440 @default.
- W3048447490 hasConcept C115961682 @default.
- W3048447490 hasConcept C124504099 @default.
- W3048447490 hasConcept C138885662 @default.
- W3048447490 hasConcept C154945302 @default.
- W3048447490 hasConcept C159078339 @default.
- W3048447490 hasConcept C160633673 @default.
- W3048447490 hasConcept C183365957 @default.
- W3048447490 hasConcept C205649164 @default.
- W3048447490 hasConcept C2524010 @default.
- W3048447490 hasConcept C2776401178 @default.
- W3048447490 hasConcept C2777210771 @default.
- W3048447490 hasConcept C2778755073 @default.
- W3048447490 hasConcept C31972630 @default.
- W3048447490 hasConcept C33923547 @default.
- W3048447490 hasConcept C41008148 @default.
- W3048447490 hasConcept C41895202 @default.
- W3048447490 hasConcept C45347329 @default.