Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048448552> ?p ?o ?g. }
- W3048448552 endingPage "1832" @default.
- W3048448552 startingPage "1822" @default.
- W3048448552 abstract "ConspectusThe defining feature of the Nazarov cyclization is a 4π-conrotatory electrocyclization, resulting in the stereospecific formation of functionalized cyclopentanones. The reaction provides access to structural motifs that are found in many natural products and drug targets. Harnessing the full potential of the Nazarov cyclization broadens its utility by enabling the development of new methodologies and synthetic strategies. To achieve these goals through efficient cyclization design, it is helpful to think of the reaction as a two-stage process. The first stage involves a 4π-electrocyclization leading to the formation of an allylic cation, and the second stage corresponds to the fate of this cationic intermediate. With a complete understanding of the discrete events that characterize the overall process, one can optimize reactivity and control the selectivity of the different Stage 2 pathways.In this Account, we describe the development of methods that render the Nazarov cyclization catalytic and chemoselective, focusing specifically on advances made in our lab between 2002 and 2015. The initial discovery made in our lab involved reactions of electronically asymmetric (“polarized”) substrates, which cyclize efficiently in the catalytic regime using mild Lewis acidic reagents. These cyclizations also exhibit selective eliminative behavior, increasing their synthetic utility. Research directed toward catalytic asymmetric Nazarov cyclization led to the serendipitous discovery of a 4π-cyclization coupled to a well-behaved Wagner–Meerwein rearrangement, representing an underexplored Stage 2 process. With careful choice of promoter and loading, it is possible to access either the rearrangement or the elimination pathway. Additional experimental and computational studies provided an effective model for anticipating the migratory behavior of substiutents in the rearrangements. Problem-solving efforts prompted investigation of alternative methods for generating pentadienyl cation intermediates, including oxidation of allenol ethers and addition of nucleophiles to dienyl diketones. These Nazarov cyclization variants afford cyclopentenone products with vicinal stereogenic centers and a different arrangement of substituents around the ring. A nucleophilic addition/cyclization/elimination sequence can be executed enantioselectively using catalytic amounts of a nonracemic chiral tertiary amine.In summary, the discovery and development of several new variations on the Nazarov electrocyclization are described, along with synthetic applications. This work illustrates how strongly substitution patterns can impact the efficiency of the 4π-electrocyclization (Stage 1), allowing for mild Lewis acid catalysis. Over the course of these studies, we have also identified new ways to access the critical pentadienyl cation intermediates and demonstrated strategies that exploit and control the different cationic pathways available post-electrocyclization (Stage 2 processes). These advances in Nazarov chemistry were subsequently employed in the synthesis of natural product targets such as (±)-merrilactone A, (±)-rocaglamide, and (±)-enokipodin B." @default.
- W3048448552 created "2020-08-18" @default.
- W3048448552 creator A5012820621 @default.
- W3048448552 creator A5018214843 @default.
- W3048448552 date "2020-08-13" @default.
- W3048448552 modified "2023-09-30" @default.
- W3048448552 title "New Twists in Nazarov Cyclization Chemistry" @default.
- W3048448552 cites W1963899674 @default.
- W3048448552 cites W1965847972 @default.
- W3048448552 cites W1968593669 @default.
- W3048448552 cites W1975590402 @default.
- W3048448552 cites W1977383252 @default.
- W3048448552 cites W1981176677 @default.
- W3048448552 cites W1982382308 @default.
- W3048448552 cites W1987391466 @default.
- W3048448552 cites W1990631874 @default.
- W3048448552 cites W1993252436 @default.
- W3048448552 cites W1994235965 @default.
- W3048448552 cites W1997596676 @default.
- W3048448552 cites W2006317245 @default.
- W3048448552 cites W2008864491 @default.
- W3048448552 cites W2009690918 @default.
- W3048448552 cites W2013288711 @default.
- W3048448552 cites W2017681494 @default.
- W3048448552 cites W2020755845 @default.
- W3048448552 cites W2021336227 @default.
- W3048448552 cites W2026021371 @default.
- W3048448552 cites W2034865965 @default.
- W3048448552 cites W2039839137 @default.
- W3048448552 cites W2040464730 @default.
- W3048448552 cites W2053214130 @default.
- W3048448552 cites W2059169730 @default.
- W3048448552 cites W2075761790 @default.
- W3048448552 cites W2083326308 @default.
- W3048448552 cites W2089530708 @default.
- W3048448552 cites W2090898087 @default.
- W3048448552 cites W2090986687 @default.
- W3048448552 cites W2093850837 @default.
- W3048448552 cites W2095025863 @default.
- W3048448552 cites W2096173633 @default.
- W3048448552 cites W2100495101 @default.
- W3048448552 cites W2101065225 @default.
- W3048448552 cites W2113341483 @default.
- W3048448552 cites W2117234163 @default.
- W3048448552 cites W2121183640 @default.
- W3048448552 cites W2124604519 @default.
- W3048448552 cites W2131570729 @default.
- W3048448552 cites W2138808538 @default.
- W3048448552 cites W2169996181 @default.
- W3048448552 cites W2172164983 @default.
- W3048448552 cites W2313079251 @default.
- W3048448552 cites W2324735414 @default.
- W3048448552 cites W2325157767 @default.
- W3048448552 cites W2333190369 @default.
- W3048448552 cites W2754498531 @default.
- W3048448552 cites W2766926318 @default.
- W3048448552 cites W2905802638 @default.
- W3048448552 cites W2907482317 @default.
- W3048448552 cites W2923073422 @default.
- W3048448552 cites W2949168944 @default.
- W3048448552 cites W2950403662 @default.
- W3048448552 cites W2950904862 @default.
- W3048448552 cites W2951082264 @default.
- W3048448552 cites W2951702787 @default.
- W3048448552 cites W2952056290 @default.
- W3048448552 cites W2952343481 @default.
- W3048448552 cites W2953044436 @default.
- W3048448552 cites W2953378992 @default.
- W3048448552 cites W4246360808 @default.
- W3048448552 doi "https://doi.org/10.1021/acs.accounts.0c00284" @default.
- W3048448552 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32790284" @default.
- W3048448552 hasPublicationYear "2020" @default.
- W3048448552 type Work @default.
- W3048448552 sameAs 3048448552 @default.
- W3048448552 citedByCount "41" @default.
- W3048448552 countsByYear W30484485522020 @default.
- W3048448552 countsByYear W30484485522021 @default.
- W3048448552 countsByYear W30484485522022 @default.
- W3048448552 countsByYear W30484485522023 @default.
- W3048448552 crossrefType "journal-article" @default.
- W3048448552 hasAuthorship W3048448552A5012820621 @default.
- W3048448552 hasAuthorship W3048448552A5018214843 @default.
- W3048448552 hasConcept C120095180 @default.
- W3048448552 hasConcept C157103358 @default.
- W3048448552 hasConcept C161790260 @default.
- W3048448552 hasConcept C163638829 @default.
- W3048448552 hasConcept C178790620 @default.
- W3048448552 hasConcept C185592680 @default.
- W3048448552 hasConcept C21951064 @default.
- W3048448552 hasConcept C2780378348 @default.
- W3048448552 hasConcept C40875361 @default.
- W3048448552 hasConcept C55493867 @default.
- W3048448552 hasConcept C74187038 @default.
- W3048448552 hasConceptScore W3048448552C120095180 @default.
- W3048448552 hasConceptScore W3048448552C157103358 @default.
- W3048448552 hasConceptScore W3048448552C161790260 @default.
- W3048448552 hasConceptScore W3048448552C163638829 @default.
- W3048448552 hasConceptScore W3048448552C178790620 @default.