Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048448847> ?p ?o ?g. }
- W3048448847 endingPage "150281" @default.
- W3048448847 startingPage "150262" @default.
- W3048448847 abstract "Power production prediction from Renewable Energy (RE) sources has been widely studied in the last decade. This is extremely important for utilities to counterpart electricity supply with consumer demands across centralized grid networks. In this context, we propose a local training strategy-based Artificial Neural Network (ANN) for predicting the power productions of solar Photovoltaic (PV) systems. Specifically, the timestamp, weather variables, and corresponding power productions collected locally at each hour interval h, h = [1,24] (i.e., an interval of Δh = 1 hour), are exploited to build, optimize, and evaluate H = 24 different ANNs for the 24 hourly solar PV production predictions. The proposed local training strategy-based ANN is expected to provide more accurate predictions with short computational times than those obtained by a single (i.e., H = 1) ANN model (hereafter called benchmark) built, optimized, and evaluated globally on the entire available dataset. The proposed strategy is applied to a case study regarding a 264kWp solar PV system located in Amman, Jordan, and its effectiveness compared to the benchmark is verified by resorting to different performance metrics from the literature. Further, its effectiveness is verified and compared when Extreme Learning Machines (ELMs) are adopted instead of the ANNs, and when the Persistence model is used. The prediction performance of the two training strategies-based ANN is also investigated and compared in terms of i) different weather conditions (i.e., seasons) experienced by the solar PV system under study and ii) different hour intervals (i.e., Δh = 2, 3, and 4 hours) used for partitioning the overall dataset and, thus, establishing the different ANNs (i.e., H = 12, 8, and 6 models, respectively)." @default.
- W3048448847 created "2020-08-18" @default.
- W3048448847 creator A5039403006 @default.
- W3048448847 creator A5063980079 @default.
- W3048448847 creator A5068104049 @default.
- W3048448847 date "2020-01-01" @default.
- W3048448847 modified "2023-10-18" @default.
- W3048448847 title "A Local Training Strategy-Based Artificial Neural Network for Predicting the Power Production of Solar Photovoltaic Systems" @default.
- W3048448847 cites W1989726836 @default.
- W3048448847 cites W2021533732 @default.
- W3048448847 cites W2026844045 @default.
- W3048448847 cites W2028903792 @default.
- W3048448847 cites W2030001474 @default.
- W3048448847 cites W2061317708 @default.
- W3048448847 cites W2109538555 @default.
- W3048448847 cites W2111072639 @default.
- W3048448847 cites W2137983211 @default.
- W3048448847 cites W2282497729 @default.
- W3048448847 cites W2284114992 @default.
- W3048448847 cites W2338842023 @default.
- W3048448847 cites W2402682637 @default.
- W3048448847 cites W2506026375 @default.
- W3048448847 cites W2592975653 @default.
- W3048448847 cites W2751698537 @default.
- W3048448847 cites W2763128055 @default.
- W3048448847 cites W2781167107 @default.
- W3048448847 cites W2785858824 @default.
- W3048448847 cites W2802229284 @default.
- W3048448847 cites W2806033525 @default.
- W3048448847 cites W2811475562 @default.
- W3048448847 cites W2865064215 @default.
- W3048448847 cites W2886813735 @default.
- W3048448847 cites W2897142354 @default.
- W3048448847 cites W2897279290 @default.
- W3048448847 cites W2903662170 @default.
- W3048448847 cites W2903951048 @default.
- W3048448847 cites W2907541716 @default.
- W3048448847 cites W2907684802 @default.
- W3048448847 cites W2925769317 @default.
- W3048448847 cites W2949806812 @default.
- W3048448847 cites W2950072808 @default.
- W3048448847 cites W2954884550 @default.
- W3048448847 cites W2976437134 @default.
- W3048448847 cites W2984252744 @default.
- W3048448847 cites W2994898822 @default.
- W3048448847 cites W2998477318 @default.
- W3048448847 cites W2999881841 @default.
- W3048448847 cites W3000157255 @default.
- W3048448847 doi "https://doi.org/10.1109/access.2020.3016165" @default.
- W3048448847 hasPublicationYear "2020" @default.
- W3048448847 type Work @default.
- W3048448847 sameAs 3048448847 @default.
- W3048448847 citedByCount "27" @default.
- W3048448847 countsByYear W30484488472020 @default.
- W3048448847 countsByYear W30484488472021 @default.
- W3048448847 countsByYear W30484488472022 @default.
- W3048448847 countsByYear W30484488472023 @default.
- W3048448847 crossrefType "journal-article" @default.
- W3048448847 hasAuthorship W3048448847A5039403006 @default.
- W3048448847 hasAuthorship W3048448847A5063980079 @default.
- W3048448847 hasAuthorship W3048448847A5068104049 @default.
- W3048448847 hasBestOaLocation W30484488471 @default.
- W3048448847 hasConcept C119599485 @default.
- W3048448847 hasConcept C121332964 @default.
- W3048448847 hasConcept C127413603 @default.
- W3048448847 hasConcept C139719470 @default.
- W3048448847 hasConcept C153294291 @default.
- W3048448847 hasConcept C154945302 @default.
- W3048448847 hasConcept C162324750 @default.
- W3048448847 hasConcept C163258240 @default.
- W3048448847 hasConcept C2777211547 @default.
- W3048448847 hasConcept C2778348673 @default.
- W3048448847 hasConcept C41008148 @default.
- W3048448847 hasConcept C41291067 @default.
- W3048448847 hasConcept C50644808 @default.
- W3048448847 hasConcept C62520636 @default.
- W3048448847 hasConceptScore W3048448847C119599485 @default.
- W3048448847 hasConceptScore W3048448847C121332964 @default.
- W3048448847 hasConceptScore W3048448847C127413603 @default.
- W3048448847 hasConceptScore W3048448847C139719470 @default.
- W3048448847 hasConceptScore W3048448847C153294291 @default.
- W3048448847 hasConceptScore W3048448847C154945302 @default.
- W3048448847 hasConceptScore W3048448847C162324750 @default.
- W3048448847 hasConceptScore W3048448847C163258240 @default.
- W3048448847 hasConceptScore W3048448847C2777211547 @default.
- W3048448847 hasConceptScore W3048448847C2778348673 @default.
- W3048448847 hasConceptScore W3048448847C41008148 @default.
- W3048448847 hasConceptScore W3048448847C41291067 @default.
- W3048448847 hasConceptScore W3048448847C50644808 @default.
- W3048448847 hasConceptScore W3048448847C62520636 @default.
- W3048448847 hasLocation W30484488471 @default.
- W3048448847 hasOpenAccess W3048448847 @default.
- W3048448847 hasPrimaryLocation W30484488471 @default.
- W3048448847 hasRelatedWork W2000668025 @default.
- W3048448847 hasRelatedWork W2143930673 @default.
- W3048448847 hasRelatedWork W2278536676 @default.
- W3048448847 hasRelatedWork W2318815139 @default.
- W3048448847 hasRelatedWork W2369077650 @default.