Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048463309> ?p ?o ?g. }
- W3048463309 abstract "Dirac materials are of great interest as condensed matter realizations of the Dirac and Weyl equations. In particular, they serve as a starting point for the study of topological phases. This physics has been extensively studied in electronic systems such as graphene, Weyl, and Dirac semimetals. In contrast, recent studies have highlighted several examples of Dirac-like cones in collective excitation spectra, viz. in phonon, magnon, and triplon bands. These cannot be directly related to the Dirac or Weyl equations as they are bosonic in nature with pseudounitary band bases. We address this issue by constructing a generic deformation scheme that maps any fermionic Hamiltonian and its spectrum to that of a bosonic problem. In particular, we show that any Dirac-like equation can be deformed into a suitable bosonic form. The resulting bosonic spectra bear a two-to-one relation to that of the parent Dirac system. Their dispersions inherit several interesting properties including conical band touching points and a gap-opening role for ‘mass’ terms. The relationship also extends to the band eigenvectors with the bosonic states carrying the same Berry connections as the parent fermionic states. The bosonic bands thus inherit topological character as well. If the parent fermionic system has nontrivial topology that leads to midgap surface states, the bosonic analog also hosts surface states that lie within the corresponding band gap. The proposed bosonic Dirac structure appears in several known models. In materials, it is realized in Ba2CuSi2O6Cl2 and possibly in CoTiO3 as well as in paramagnetic honeycomb ruthenates. Our results allow for a rigorous understanding of Dirac phononic and magnonic systems and enable concrete predictions, e.g., of surface states in magnonic topological insulators and Weyl semimetals.Received 4 March 2018Accepted 5 June 2020DOI:https://doi.org/10.1103/PhysRevResearch.2.033035Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasMagnonsPhysical SystemsDirac semimetalTopological materialsCondensed Matter & Materials Physics" @default.
- W3048463309 created "2020-08-18" @default.
- W3048463309 creator A5023970139 @default.
- W3048463309 creator A5055772054 @default.
- W3048463309 creator A5074369164 @default.
- W3048463309 date "2020-07-08" @default.
- W3048463309 modified "2023-10-16" @default.
- W3048463309 title "Dirac Hamiltonians for bosonic spectra" @default.
- W3048463309 cites W1544063109 @default.
- W3048463309 cites W1972012688 @default.
- W3048463309 cites W1972142120 @default.
- W3048463309 cites W1980565565 @default.
- W3048463309 cites W2007421284 @default.
- W3048463309 cites W2020218125 @default.
- W3048463309 cites W2021630251 @default.
- W3048463309 cites W2030164271 @default.
- W3048463309 cites W2033613527 @default.
- W3048463309 cites W2041369200 @default.
- W3048463309 cites W2046030217 @default.
- W3048463309 cites W2048469514 @default.
- W3048463309 cites W2057273788 @default.
- W3048463309 cites W2085158440 @default.
- W3048463309 cites W2087489306 @default.
- W3048463309 cites W2115709556 @default.
- W3048463309 cites W2166013111 @default.
- W3048463309 cites W2179764244 @default.
- W3048463309 cites W2190904971 @default.
- W3048463309 cites W2219529436 @default.
- W3048463309 cites W2243368185 @default.
- W3048463309 cites W2292974118 @default.
- W3048463309 cites W2301496559 @default.
- W3048463309 cites W2318041489 @default.
- W3048463309 cites W2465876913 @default.
- W3048463309 cites W2496610351 @default.
- W3048463309 cites W2510758450 @default.
- W3048463309 cites W2512433145 @default.
- W3048463309 cites W2512738585 @default.
- W3048463309 cites W2520735454 @default.
- W3048463309 cites W2579583736 @default.
- W3048463309 cites W2592315298 @default.
- W3048463309 cites W2613666757 @default.
- W3048463309 cites W2620500330 @default.
- W3048463309 cites W2736609056 @default.
- W3048463309 cites W2742656708 @default.
- W3048463309 cites W2745888403 @default.
- W3048463309 cites W2760945586 @default.
- W3048463309 cites W2810678645 @default.
- W3048463309 cites W2889161091 @default.
- W3048463309 cites W2890353808 @default.
- W3048463309 cites W2902069058 @default.
- W3048463309 cites W2946231579 @default.
- W3048463309 cites W3012411712 @default.
- W3048463309 cites W3022181620 @default.
- W3048463309 cites W3037296591 @default.
- W3048463309 cites W3048193160 @default.
- W3048463309 cites W3098709754 @default.
- W3048463309 cites W3099213036 @default.
- W3048463309 cites W3103870421 @default.
- W3048463309 cites W3104312093 @default.
- W3048463309 cites W326669990 @default.
- W3048463309 doi "https://doi.org/10.1103/physrevresearch.2.033035" @default.
- W3048463309 hasPublicationYear "2020" @default.
- W3048463309 type Work @default.
- W3048463309 sameAs 3048463309 @default.
- W3048463309 citedByCount "8" @default.
- W3048463309 countsByYear W30484633092020 @default.
- W3048463309 countsByYear W30484633092021 @default.
- W3048463309 countsByYear W30484633092022 @default.
- W3048463309 countsByYear W30484633092023 @default.
- W3048463309 crossrefType "journal-article" @default.
- W3048463309 hasAuthorship W3048463309A5023970139 @default.
- W3048463309 hasAuthorship W3048463309A5055772054 @default.
- W3048463309 hasAuthorship W3048463309A5074369164 @default.
- W3048463309 hasBestOaLocation W30484633091 @default.
- W3048463309 hasConcept C121332964 @default.
- W3048463309 hasConcept C126255220 @default.
- W3048463309 hasConcept C130787639 @default.
- W3048463309 hasConcept C149545384 @default.
- W3048463309 hasConcept C156785651 @default.
- W3048463309 hasConcept C186453547 @default.
- W3048463309 hasConcept C30080830 @default.
- W3048463309 hasConcept C33923547 @default.
- W3048463309 hasConcept C37914503 @default.
- W3048463309 hasConcept C50575695 @default.
- W3048463309 hasConcept C61039578 @default.
- W3048463309 hasConcept C62520636 @default.
- W3048463309 hasConcept C79955541 @default.
- W3048463309 hasConcept C82601208 @default.
- W3048463309 hasConcept C84076635 @default.
- W3048463309 hasConceptScore W3048463309C121332964 @default.
- W3048463309 hasConceptScore W3048463309C126255220 @default.
- W3048463309 hasConceptScore W3048463309C130787639 @default.
- W3048463309 hasConceptScore W3048463309C149545384 @default.
- W3048463309 hasConceptScore W3048463309C156785651 @default.
- W3048463309 hasConceptScore W3048463309C186453547 @default.
- W3048463309 hasConceptScore W3048463309C30080830 @default.
- W3048463309 hasConceptScore W3048463309C33923547 @default.
- W3048463309 hasConceptScore W3048463309C37914503 @default.
- W3048463309 hasConceptScore W3048463309C50575695 @default.
- W3048463309 hasConceptScore W3048463309C61039578 @default.