Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048473311> ?p ?o ?g. }
- W3048473311 endingPage "426" @default.
- W3048473311 startingPage "395" @default.
- W3048473311 abstract "Clinical trial is a prescribed learning process for identifying safe and effective treatments. In recent years, rapid advancements in cancer biology, immunology, genomics, and treatment development have demanded innovative methods to identify better therapies for the most appropriate population in a timely, efficient, accurate, and cost-effective way. In this chapter, we will first illustrate the concept of Bayesian update and Bayesian inference, which is a superior alternative to the traditional frequentist approach. Bayesian methods take the learn as we go approach, making them innately suitable for clinical trials. Then, we will give an overview of Bayesian adaptive designs in the areas of adaptive dose finding, posterior probability and predictive probability calculation, outcome adaptive randomization, multi-endpoint phase II design, multi-arm, multi-stage platform design, hierarchical modeling, etc. In particular, a new class of model-assisted designs will be introduced, which combine the transparency and simplicity of conventional algorithm-based designs with the superiority and rigorousness of model-based designs. These designs enjoy superior performance comparable to more complicated, model-based designs, though they are also capable of simplicity similar to conventional designs. Examples of the Bayesian optimal interval (BOIN), the keyboard, the time-to-event BOIN (TITE-BOIN), the BOIN combination, and the Bayesian Optimal Phase 2 (BOP2) designs will be discussed. Real applications, including BATTLE trial in lung cancer, I-SPY 2 trial in breast cancer, and GBM AGILE in glioblastoma, will be given. The chapter will also introduce software tools, including downloadable programs and online Shiny applications for the design and conduct of clinical trials. Bayesian adaptive clinical trial designs increase study efficiency, allow more flexible trial conduct, and treat a greater number of patients with more effective treatments in the trial. They also possess desirable frequentist properties. Useful software tools can be found at: https://biostatistics.mdanderson.org/SoftwareDownload/ and https://trialdesign.org/ ." @default.
- W3048473311 created "2020-08-18" @default.
- W3048473311 creator A5004062907 @default.
- W3048473311 creator A5052092144 @default.
- W3048473311 date "2020-01-01" @default.
- W3048473311 modified "2023-10-16" @default.
- W3048473311 title "Novel Bayesian Adaptive Designs and Their Applications in Cancer Clinical Trials" @default.
- W3048473311 cites W1014637638 @default.
- W3048473311 cites W1603027017 @default.
- W3048473311 cites W1895279792 @default.
- W3048473311 cites W1969525589 @default.
- W3048473311 cites W1986502618 @default.
- W3048473311 cites W1987477151 @default.
- W3048473311 cites W1988289042 @default.
- W3048473311 cites W2000705046 @default.
- W3048473311 cites W2005494948 @default.
- W3048473311 cites W2007648830 @default.
- W3048473311 cites W2021263320 @default.
- W3048473311 cites W2024963690 @default.
- W3048473311 cites W2029409133 @default.
- W3048473311 cites W2038985537 @default.
- W3048473311 cites W2040875390 @default.
- W3048473311 cites W2042990006 @default.
- W3048473311 cites W2044439361 @default.
- W3048473311 cites W2046336612 @default.
- W3048473311 cites W2056746548 @default.
- W3048473311 cites W2061178002 @default.
- W3048473311 cites W2064117019 @default.
- W3048473311 cites W2066194338 @default.
- W3048473311 cites W2071941141 @default.
- W3048473311 cites W2076108528 @default.
- W3048473311 cites W2080114818 @default.
- W3048473311 cites W2085705004 @default.
- W3048473311 cites W2088695439 @default.
- W3048473311 cites W2089083166 @default.
- W3048473311 cites W2092335024 @default.
- W3048473311 cites W2094615848 @default.
- W3048473311 cites W2100396735 @default.
- W3048473311 cites W2104438003 @default.
- W3048473311 cites W2106024235 @default.
- W3048473311 cites W2113073012 @default.
- W3048473311 cites W2129546350 @default.
- W3048473311 cites W2141724682 @default.
- W3048473311 cites W2149344761 @default.
- W3048473311 cites W2149636226 @default.
- W3048473311 cites W2155291829 @default.
- W3048473311 cites W2158740848 @default.
- W3048473311 cites W2165514316 @default.
- W3048473311 cites W2167228337 @default.
- W3048473311 cites W2168076595 @default.
- W3048473311 cites W2244666291 @default.
- W3048473311 cites W2277432382 @default.
- W3048473311 cites W2344619281 @default.
- W3048473311 cites W2346987786 @default.
- W3048473311 cites W2462607031 @default.
- W3048473311 cites W2471493685 @default.
- W3048473311 cites W2474664935 @default.
- W3048473311 cites W2493289085 @default.
- W3048473311 cites W2500954855 @default.
- W3048473311 cites W2509620695 @default.
- W3048473311 cites W2512518579 @default.
- W3048473311 cites W2515770023 @default.
- W3048473311 cites W2525962908 @default.
- W3048473311 cites W2587818429 @default.
- W3048473311 cites W2590974176 @default.
- W3048473311 cites W2619747939 @default.
- W3048473311 cites W2624426279 @default.
- W3048473311 cites W2624989951 @default.
- W3048473311 cites W2744742277 @default.
- W3048473311 cites W2748703947 @default.
- W3048473311 cites W2782716233 @default.
- W3048473311 cites W2799795409 @default.
- W3048473311 cites W2801395530 @default.
- W3048473311 cites W2802492614 @default.
- W3048473311 cites W2804829033 @default.
- W3048473311 cites W2805245407 @default.
- W3048473311 cites W2883290014 @default.
- W3048473311 cites W2885886328 @default.
- W3048473311 cites W2893923959 @default.
- W3048473311 cites W2953362864 @default.
- W3048473311 cites W2956031848 @default.
- W3048473311 cites W2963086081 @default.
- W3048473311 cites W2970160864 @default.
- W3048473311 cites W2981808199 @default.
- W3048473311 cites W324102958 @default.
- W3048473311 cites W4297446959 @default.
- W3048473311 cites W4385962213 @default.
- W3048473311 doi "https://doi.org/10.1007/978-3-030-42196-0_17" @default.
- W3048473311 hasPublicationYear "2020" @default.
- W3048473311 type Work @default.
- W3048473311 sameAs 3048473311 @default.
- W3048473311 citedByCount "1" @default.
- W3048473311 countsByYear W30484733112021 @default.
- W3048473311 crossrefType "book-chapter" @default.
- W3048473311 hasAuthorship W3048473311A5004062907 @default.
- W3048473311 hasAuthorship W3048473311A5052092144 @default.
- W3048473311 hasConcept C107673813 @default.
- W3048473311 hasConcept C119857082 @default.