Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048473992> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3048473992 endingPage "310" @default.
- W3048473992 startingPage "297" @default.
- W3048473992 abstract "Phishing remains a continual security threat, causing global losses exceeding 3.5 billion USD in 2019, according to the FBI’s Internet Crime Complaint Center. The Anti-Phishing Working Group (APWG) reported as many as 2,172 unique phishing websites detected per day in 2019. Most of the methods to solve the phishing websites’ detection problem proposed by the scientific community are based on classical classification algorithms on phishing datasets with hand-extracted features. Although these methods demonstrate high accuracies, unfortunately, they are sensitive to changing environment: phishers can learn the most relevant URL features and adapt their attacks to overcome the security check. Therefore, in search of less sensitive methods, deep neural networks were started to employ, as they do not require manual feature extraction and can directly learn a representation from the URL’s sequence of characters. The purpose of this research is to propose a new method for phishing websites’ URL detection based on ensembles of Recurrent neural networks and other types of deep neural networks. The results of our approach are presented in this paper and compared with the performance of other Recurrent neural networks. These results are additionally compared with the performance of classical classification algorithms on the same dataset with 48 features extracted. Our method with no manually extracted feature gives a significant increase in classification accuracy, compared with single Recurrent neural networks, and matches the accuracy of classical classification ensembles with manually extracted features." @default.
- W3048473992 created "2020-08-18" @default.
- W3048473992 creator A5003780914 @default.
- W3048473992 creator A5057732199 @default.
- W3048473992 date "2020-01-01" @default.
- W3048473992 modified "2023-09-25" @default.
- W3048473992 title "Composition of Ensembles of Recurrent Neural Networks for Phishing Websites Detection" @default.
- W3048473992 cites W1536771657 @default.
- W3048473992 cites W1622676895 @default.
- W3048473992 cites W1924689489 @default.
- W3048473992 cites W1990188874 @default.
- W3048473992 cites W2064675550 @default.
- W3048473992 cites W2101210513 @default.
- W3048473992 cites W2107878631 @default.
- W3048473992 cites W2152929147 @default.
- W3048473992 cites W2157331557 @default.
- W3048473992 cites W2158568356 @default.
- W3048473992 cites W2418966180 @default.
- W3048473992 cites W2598727995 @default.
- W3048473992 cites W2614646077 @default.
- W3048473992 cites W2625935159 @default.
- W3048473992 cites W2806164097 @default.
- W3048473992 cites W2886377174 @default.
- W3048473992 cites W2888458087 @default.
- W3048473992 cites W2899428374 @default.
- W3048473992 cites W2909737018 @default.
- W3048473992 cites W2914801588 @default.
- W3048473992 cites W2971561269 @default.
- W3048473992 cites W2975388328 @default.
- W3048473992 cites W3014091144 @default.
- W3048473992 cites W4229977739 @default.
- W3048473992 cites W4236303630 @default.
- W3048473992 doi "https://doi.org/10.1007/978-3-030-57672-1_22" @default.
- W3048473992 hasPublicationYear "2020" @default.
- W3048473992 type Work @default.
- W3048473992 sameAs 3048473992 @default.
- W3048473992 citedByCount "3" @default.
- W3048473992 countsByYear W30484739922021 @default.
- W3048473992 countsByYear W30484739922022 @default.
- W3048473992 countsByYear W30484739922023 @default.
- W3048473992 crossrefType "book-chapter" @default.
- W3048473992 hasAuthorship W3048473992A5003780914 @default.
- W3048473992 hasAuthorship W3048473992A5057732199 @default.
- W3048473992 hasConcept C110875604 @default.
- W3048473992 hasConcept C119857082 @default.
- W3048473992 hasConcept C124101348 @default.
- W3048473992 hasConcept C136764020 @default.
- W3048473992 hasConcept C138885662 @default.
- W3048473992 hasConcept C147168706 @default.
- W3048473992 hasConcept C153180895 @default.
- W3048473992 hasConcept C154945302 @default.
- W3048473992 hasConcept C2776401178 @default.
- W3048473992 hasConcept C41008148 @default.
- W3048473992 hasConcept C41895202 @default.
- W3048473992 hasConcept C50644808 @default.
- W3048473992 hasConcept C52622490 @default.
- W3048473992 hasConcept C83860907 @default.
- W3048473992 hasConceptScore W3048473992C110875604 @default.
- W3048473992 hasConceptScore W3048473992C119857082 @default.
- W3048473992 hasConceptScore W3048473992C124101348 @default.
- W3048473992 hasConceptScore W3048473992C136764020 @default.
- W3048473992 hasConceptScore W3048473992C138885662 @default.
- W3048473992 hasConceptScore W3048473992C147168706 @default.
- W3048473992 hasConceptScore W3048473992C153180895 @default.
- W3048473992 hasConceptScore W3048473992C154945302 @default.
- W3048473992 hasConceptScore W3048473992C2776401178 @default.
- W3048473992 hasConceptScore W3048473992C41008148 @default.
- W3048473992 hasConceptScore W3048473992C41895202 @default.
- W3048473992 hasConceptScore W3048473992C50644808 @default.
- W3048473992 hasConceptScore W3048473992C52622490 @default.
- W3048473992 hasConceptScore W3048473992C83860907 @default.
- W3048473992 hasLocation W30484739921 @default.
- W3048473992 hasOpenAccess W3048473992 @default.
- W3048473992 hasPrimaryLocation W30484739921 @default.
- W3048473992 hasRelatedWork W1964120219 @default.
- W3048473992 hasRelatedWork W2000165426 @default.
- W3048473992 hasRelatedWork W2016461833 @default.
- W3048473992 hasRelatedWork W2136054869 @default.
- W3048473992 hasRelatedWork W2144059113 @default.
- W3048473992 hasRelatedWork W2146076056 @default.
- W3048473992 hasRelatedWork W2385132419 @default.
- W3048473992 hasRelatedWork W2546942002 @default.
- W3048473992 hasRelatedWork W2811390910 @default.
- W3048473992 hasRelatedWork W3003836766 @default.
- W3048473992 isParatext "false" @default.
- W3048473992 isRetracted "false" @default.
- W3048473992 magId "3048473992" @default.
- W3048473992 workType "book-chapter" @default.