Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048476988> ?p ?o ?g. }
- W3048476988 endingPage "12" @default.
- W3048476988 startingPage "1" @default.
- W3048476988 abstract "With the rapid development of computer technology, some machine learning methods have begun to gradually integrate into the petroleum industry and have achieved some achievements, whether in conventional or unconventional reservoirs. This paper presents an alternative method to predict vertical heterogeneity of the reservoir utilizing various deep neural networks basing on dynamic production data. A numerical simulation technique was adopted to obtain the required dataset, which contains dynamic production data calculated under different heterogeneous reservoir conditions. Machine learning models were established through deep neural networks, which learn and capture the characteristics better between dynamic production data and reservoir heterogeneity, so as to invert the vertical permeability. On the basis of model validation, the results show that machine learning methods have excellent performance in predicting heterogeneity with the RMSE of 12.71 mD, which effectively estimated the permeability of the entire reservoir. Moreover, the overall AARD of the predictive result obtained by the CNN method was controlled at 11.51%, revealing the highest accuracy compared with BP and LSTM neural networks. And the permeability contrast, an important parameter to characterize heterogeneity, can be predicted precisely as well, with a derivation of below 10%. This study proposed a potential for vertical heterogeneity prediction in reservoir basing on machine learning methods." @default.
- W3048476988 created "2020-08-18" @default.
- W3048476988 creator A5014774313 @default.
- W3048476988 creator A5026396936 @default.
- W3048476988 creator A5029992618 @default.
- W3048476988 creator A5035475445 @default.
- W3048476988 creator A5058196150 @default.
- W3048476988 creator A5082149363 @default.
- W3048476988 creator A5087876606 @default.
- W3048476988 date "2020-08-12" @default.
- W3048476988 modified "2023-10-17" @default.
- W3048476988 title "Potential for Vertical Heterogeneity Prediction in Reservoir Basing on Machine Learning Methods" @default.
- W3048476988 cites W2011813674 @default.
- W3048476988 cites W2013613422 @default.
- W3048476988 cites W2024392312 @default.
- W3048476988 cites W2093733173 @default.
- W3048476988 cites W2156744894 @default.
- W3048476988 cites W2173461535 @default.
- W3048476988 cites W2418033038 @default.
- W3048476988 cites W2563048194 @default.
- W3048476988 cites W2600074740 @default.
- W3048476988 cites W2618530766 @default.
- W3048476988 cites W2793669142 @default.
- W3048476988 cites W2891234523 @default.
- W3048476988 cites W2891589939 @default.
- W3048476988 cites W2902775161 @default.
- W3048476988 cites W2910979498 @default.
- W3048476988 cites W2937703642 @default.
- W3048476988 cites W2964156851 @default.
- W3048476988 cites W2973827652 @default.
- W3048476988 cites W2985018706 @default.
- W3048476988 cites W3000457931 @default.
- W3048476988 cites W3005474703 @default.
- W3048476988 doi "https://doi.org/10.1155/2020/3713525" @default.
- W3048476988 hasPublicationYear "2020" @default.
- W3048476988 type Work @default.
- W3048476988 sameAs 3048476988 @default.
- W3048476988 citedByCount "10" @default.
- W3048476988 countsByYear W30484769882020 @default.
- W3048476988 countsByYear W30484769882021 @default.
- W3048476988 countsByYear W30484769882022 @default.
- W3048476988 crossrefType "journal-article" @default.
- W3048476988 hasAuthorship W3048476988A5014774313 @default.
- W3048476988 hasAuthorship W3048476988A5026396936 @default.
- W3048476988 hasAuthorship W3048476988A5029992618 @default.
- W3048476988 hasAuthorship W3048476988A5035475445 @default.
- W3048476988 hasAuthorship W3048476988A5058196150 @default.
- W3048476988 hasAuthorship W3048476988A5082149363 @default.
- W3048476988 hasAuthorship W3048476988A5087876606 @default.
- W3048476988 hasBestOaLocation W30484769881 @default.
- W3048476988 hasConcept C108583219 @default.
- W3048476988 hasConcept C119857082 @default.
- W3048476988 hasConcept C120882062 @default.
- W3048476988 hasConcept C127313418 @default.
- W3048476988 hasConcept C135796866 @default.
- W3048476988 hasConcept C14641988 @default.
- W3048476988 hasConcept C147168706 @default.
- W3048476988 hasConcept C154945302 @default.
- W3048476988 hasConcept C2778668878 @default.
- W3048476988 hasConcept C41008148 @default.
- W3048476988 hasConcept C41625074 @default.
- W3048476988 hasConcept C45804977 @default.
- W3048476988 hasConcept C50644808 @default.
- W3048476988 hasConcept C54355233 @default.
- W3048476988 hasConcept C78762247 @default.
- W3048476988 hasConcept C86803240 @default.
- W3048476988 hasConceptScore W3048476988C108583219 @default.
- W3048476988 hasConceptScore W3048476988C119857082 @default.
- W3048476988 hasConceptScore W3048476988C120882062 @default.
- W3048476988 hasConceptScore W3048476988C127313418 @default.
- W3048476988 hasConceptScore W3048476988C135796866 @default.
- W3048476988 hasConceptScore W3048476988C14641988 @default.
- W3048476988 hasConceptScore W3048476988C147168706 @default.
- W3048476988 hasConceptScore W3048476988C154945302 @default.
- W3048476988 hasConceptScore W3048476988C2778668878 @default.
- W3048476988 hasConceptScore W3048476988C41008148 @default.
- W3048476988 hasConceptScore W3048476988C41625074 @default.
- W3048476988 hasConceptScore W3048476988C45804977 @default.
- W3048476988 hasConceptScore W3048476988C50644808 @default.
- W3048476988 hasConceptScore W3048476988C54355233 @default.
- W3048476988 hasConceptScore W3048476988C78762247 @default.
- W3048476988 hasConceptScore W3048476988C86803240 @default.
- W3048476988 hasFunder F4320321001 @default.
- W3048476988 hasLocation W30484769881 @default.
- W3048476988 hasOpenAccess W3048476988 @default.
- W3048476988 hasPrimaryLocation W30484769881 @default.
- W3048476988 hasRelatedWork W1575337584 @default.
- W3048476988 hasRelatedWork W2008957783 @default.
- W3048476988 hasRelatedWork W2023204696 @default.
- W3048476988 hasRelatedWork W2041496920 @default.
- W3048476988 hasRelatedWork W2066117331 @default.
- W3048476988 hasRelatedWork W2080212234 @default.
- W3048476988 hasRelatedWork W2103044460 @default.
- W3048476988 hasRelatedWork W2526687582 @default.
- W3048476988 hasRelatedWork W3021763247 @default.
- W3048476988 hasRelatedWork W3022104286 @default.
- W3048476988 hasVolume "2020" @default.
- W3048476988 isParatext "false" @default.