Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048487700> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3048487700 endingPage "170" @default.
- W3048487700 startingPage "140" @default.
- W3048487700 abstract "Supply chain management (SCM) is a fast growing and largely studied field of research. Forecasting of the required materials and parts is an important task in companies and can have a significant impact on the total cost. To have a reliable forecast, some advanced methods such as deep learning techniques are helpful. The main goal of this chapter is to forecast the unit sales of thousands of items sold at different chain stores located in Ecuador with holistic techniques. Three deep learning approaches including artificial neural network (ANN), convolutional neural network (CNN), and long short-term memory (LSTM) are adopted here for predictions from the Corporación Favorita grocery sales forecasting dataset collected from Kaggle website. Finally, the performances of the applied models are evaluated and compared. The results show that LSTM network tends to outperform the other two approaches in terms of performance. All experiments are conducted using Python's deep learning library and Keras and Tensorflow packages." @default.
- W3048487700 created "2020-08-18" @default.
- W3048487700 creator A5006214959 @default.
- W3048487700 creator A5011965786 @default.
- W3048487700 creator A5039071820 @default.
- W3048487700 date "2021-01-01" @default.
- W3048487700 modified "2023-10-16" @default.
- W3048487700 title "Demand Forecasting in Supply Chain Management Using Different Deep Learning Methods" @default.
- W3048487700 cites W1557037912 @default.
- W3048487700 cites W1968806673 @default.
- W3048487700 cites W1976514586 @default.
- W3048487700 cites W1986078433 @default.
- W3048487700 cites W1990517717 @default.
- W3048487700 cites W1992880712 @default.
- W3048487700 cites W2016210396 @default.
- W3048487700 cites W2046164998 @default.
- W3048487700 cites W2061152874 @default.
- W3048487700 cites W2064675550 @default.
- W3048487700 cites W2070854196 @default.
- W3048487700 cites W2079406519 @default.
- W3048487700 cites W2092685308 @default.
- W3048487700 cites W2148051570 @default.
- W3048487700 cites W2149723649 @default.
- W3048487700 cites W2158442843 @default.
- W3048487700 cites W2785897848 @default.
- W3048487700 cites W2808797711 @default.
- W3048487700 cites W2899502651 @default.
- W3048487700 cites W2907876867 @default.
- W3048487700 cites W2958662733 @default.
- W3048487700 cites W4312410127 @default.
- W3048487700 cites W87895276 @default.
- W3048487700 doi "https://doi.org/10.4018/978-1-7998-3805-0.ch005" @default.
- W3048487700 hasPublicationYear "2021" @default.
- W3048487700 type Work @default.
- W3048487700 sameAs 3048487700 @default.
- W3048487700 citedByCount "22" @default.
- W3048487700 countsByYear W30484877002022 @default.
- W3048487700 countsByYear W30484877002023 @default.
- W3048487700 crossrefType "book-chapter" @default.
- W3048487700 hasAuthorship W3048487700A5006214959 @default.
- W3048487700 hasAuthorship W3048487700A5011965786 @default.
- W3048487700 hasAuthorship W3048487700A5039071820 @default.
- W3048487700 hasConcept C108583219 @default.
- W3048487700 hasConcept C108713360 @default.
- W3048487700 hasConcept C111919701 @default.
- W3048487700 hasConcept C119857082 @default.
- W3048487700 hasConcept C127413603 @default.
- W3048487700 hasConcept C144133560 @default.
- W3048487700 hasConcept C154945302 @default.
- W3048487700 hasConcept C162853370 @default.
- W3048487700 hasConcept C193809577 @default.
- W3048487700 hasConcept C201995342 @default.
- W3048487700 hasConcept C2780451532 @default.
- W3048487700 hasConcept C41008148 @default.
- W3048487700 hasConcept C42475967 @default.
- W3048487700 hasConcept C44104985 @default.
- W3048487700 hasConcept C50644808 @default.
- W3048487700 hasConcept C519991488 @default.
- W3048487700 hasConcept C81363708 @default.
- W3048487700 hasConceptScore W3048487700C108583219 @default.
- W3048487700 hasConceptScore W3048487700C108713360 @default.
- W3048487700 hasConceptScore W3048487700C111919701 @default.
- W3048487700 hasConceptScore W3048487700C119857082 @default.
- W3048487700 hasConceptScore W3048487700C127413603 @default.
- W3048487700 hasConceptScore W3048487700C144133560 @default.
- W3048487700 hasConceptScore W3048487700C154945302 @default.
- W3048487700 hasConceptScore W3048487700C162853370 @default.
- W3048487700 hasConceptScore W3048487700C193809577 @default.
- W3048487700 hasConceptScore W3048487700C201995342 @default.
- W3048487700 hasConceptScore W3048487700C2780451532 @default.
- W3048487700 hasConceptScore W3048487700C41008148 @default.
- W3048487700 hasConceptScore W3048487700C42475967 @default.
- W3048487700 hasConceptScore W3048487700C44104985 @default.
- W3048487700 hasConceptScore W3048487700C50644808 @default.
- W3048487700 hasConceptScore W3048487700C519991488 @default.
- W3048487700 hasConceptScore W3048487700C81363708 @default.
- W3048487700 hasLocation W30484877001 @default.
- W3048487700 hasOpenAccess W3048487700 @default.
- W3048487700 hasPrimaryLocation W30484877001 @default.
- W3048487700 hasRelatedWork W1699080303 @default.
- W3048487700 hasRelatedWork W2026811664 @default.
- W3048487700 hasRelatedWork W2371680328 @default.
- W3048487700 hasRelatedWork W2535281349 @default.
- W3048487700 hasRelatedWork W2983500849 @default.
- W3048487700 hasRelatedWork W3024999678 @default.
- W3048487700 hasRelatedWork W3187193180 @default.
- W3048487700 hasRelatedWork W388184414 @default.
- W3048487700 hasRelatedWork W4287027380 @default.
- W3048487700 hasRelatedWork W106542691 @default.
- W3048487700 isParatext "false" @default.
- W3048487700 isRetracted "false" @default.
- W3048487700 magId "3048487700" @default.
- W3048487700 workType "book-chapter" @default.