Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048490831> ?p ?o ?g. }
- W3048490831 endingPage "989" @default.
- W3048490831 startingPage "981" @default.
- W3048490831 abstract "Air pollution epidemiology has primarily relied on fixed outdoor air quality monitoring networks and static populations. Taking advantage of recent advancements in sensor technologies and computational techniques, this paper presents a novel methodological approach that improves dose estimations of multiple air pollutants in large-scale health studies. We show the results of an intensive field campaign that measured personal exposures to gaseous pollutants and particulate matter of a health panel of 251 participants residing in urban and peri-urban Beijing with 60 personal air quality monitors (PAMs). Outdoor air pollution measurements were collected in monitoring stations close to the participants’ residential addresses. Based on parameters collected with the PAMs, we developed an advanced computational model that automatically classified time-activity-location patterns of each individual during daily life at high spatial and temporal resolution. Applying this methodological approach in two established cohorts, we found substantial differences between doses estimated from outdoor and personal air quality measurements. The PAM measurements also significantly reduced the correlation between pollutant species often observed in static outdoor measurements, reducing confounding effects. Future work will utilise these improved dose estimations to investigate the underlying mechanisms of air pollution on cardio-pulmonary health outcomes using detailed medical biomarkers in a way that has not been possible before." @default.
- W3048490831 created "2020-08-18" @default.
- W3048490831 creator A5000095164 @default.
- W3048490831 creator A5007506428 @default.
- W3048490831 creator A5008920624 @default.
- W3048490831 creator A5014676435 @default.
- W3048490831 creator A5017236035 @default.
- W3048490831 creator A5023184804 @default.
- W3048490831 creator A5028354447 @default.
- W3048490831 creator A5029517450 @default.
- W3048490831 creator A5045617018 @default.
- W3048490831 creator A5052070848 @default.
- W3048490831 creator A5053699193 @default.
- W3048490831 creator A5056896340 @default.
- W3048490831 creator A5058161157 @default.
- W3048490831 creator A5080041548 @default.
- W3048490831 creator A5080294507 @default.
- W3048490831 date "2020-08-12" @default.
- W3048490831 modified "2023-10-12" @default.
- W3048490831 title "Using low-cost sensor technologies and advanced computational methods to improve dose estimations in health panel studies: results of the AIRLESS project" @default.
- W3048490831 cites W1973106674 @default.
- W3048490831 cites W1976888543 @default.
- W3048490831 cites W1981303445 @default.
- W3048490831 cites W1997106209 @default.
- W3048490831 cites W2004370310 @default.
- W3048490831 cites W2023751553 @default.
- W3048490831 cites W2040672892 @default.
- W3048490831 cites W2057481806 @default.
- W3048490831 cites W2062722658 @default.
- W3048490831 cites W2084232990 @default.
- W3048490831 cites W2088187245 @default.
- W3048490831 cites W2121721378 @default.
- W3048490831 cites W2157363636 @default.
- W3048490831 cites W2159200188 @default.
- W3048490831 cites W2607350314 @default.
- W3048490831 cites W2897135200 @default.
- W3048490831 cites W2945995215 @default.
- W3048490831 cites W3012672452 @default.
- W3048490831 doi "https://doi.org/10.1038/s41370-020-0259-6" @default.
- W3048490831 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32788611" @default.
- W3048490831 hasPublicationYear "2020" @default.
- W3048490831 type Work @default.
- W3048490831 sameAs 3048490831 @default.
- W3048490831 citedByCount "19" @default.
- W3048490831 countsByYear W30484908312020 @default.
- W3048490831 countsByYear W30484908312021 @default.
- W3048490831 countsByYear W30484908312022 @default.
- W3048490831 countsByYear W30484908312023 @default.
- W3048490831 crossrefType "journal-article" @default.
- W3048490831 hasAuthorship W3048490831A5000095164 @default.
- W3048490831 hasAuthorship W3048490831A5007506428 @default.
- W3048490831 hasAuthorship W3048490831A5008920624 @default.
- W3048490831 hasAuthorship W3048490831A5014676435 @default.
- W3048490831 hasAuthorship W3048490831A5017236035 @default.
- W3048490831 hasAuthorship W3048490831A5023184804 @default.
- W3048490831 hasAuthorship W3048490831A5028354447 @default.
- W3048490831 hasAuthorship W3048490831A5029517450 @default.
- W3048490831 hasAuthorship W3048490831A5045617018 @default.
- W3048490831 hasAuthorship W3048490831A5052070848 @default.
- W3048490831 hasAuthorship W3048490831A5053699193 @default.
- W3048490831 hasAuthorship W3048490831A5056896340 @default.
- W3048490831 hasAuthorship W3048490831A5058161157 @default.
- W3048490831 hasAuthorship W3048490831A5080041548 @default.
- W3048490831 hasAuthorship W3048490831A5080294507 @default.
- W3048490831 hasBestOaLocation W30484908312 @default.
- W3048490831 hasConcept C105795698 @default.
- W3048490831 hasConcept C126314574 @default.
- W3048490831 hasConcept C153294291 @default.
- W3048490831 hasConcept C166957645 @default.
- W3048490831 hasConcept C178790620 @default.
- W3048490831 hasConcept C185592680 @default.
- W3048490831 hasConcept C18903297 @default.
- W3048490831 hasConcept C191935318 @default.
- W3048490831 hasConcept C205649164 @default.
- W3048490831 hasConcept C24245907 @default.
- W3048490831 hasConcept C2778304055 @default.
- W3048490831 hasConcept C2987853052 @default.
- W3048490831 hasConcept C33923547 @default.
- W3048490831 hasConcept C39432304 @default.
- W3048490831 hasConcept C41008148 @default.
- W3048490831 hasConcept C521259446 @default.
- W3048490831 hasConcept C559116025 @default.
- W3048490831 hasConcept C71924100 @default.
- W3048490831 hasConcept C77350462 @default.
- W3048490831 hasConcept C82685317 @default.
- W3048490831 hasConcept C86803240 @default.
- W3048490831 hasConcept C99454951 @default.
- W3048490831 hasConceptScore W3048490831C105795698 @default.
- W3048490831 hasConceptScore W3048490831C126314574 @default.
- W3048490831 hasConceptScore W3048490831C153294291 @default.
- W3048490831 hasConceptScore W3048490831C166957645 @default.
- W3048490831 hasConceptScore W3048490831C178790620 @default.
- W3048490831 hasConceptScore W3048490831C185592680 @default.
- W3048490831 hasConceptScore W3048490831C18903297 @default.
- W3048490831 hasConceptScore W3048490831C191935318 @default.
- W3048490831 hasConceptScore W3048490831C205649164 @default.
- W3048490831 hasConceptScore W3048490831C24245907 @default.
- W3048490831 hasConceptScore W3048490831C2778304055 @default.