Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048503086> ?p ?o ?g. }
- W3048503086 endingPage "86" @default.
- W3048503086 startingPage "86" @default.
- W3048503086 abstract "Mobilized telemedicine is becoming a key, and even necessary, facet of both precision health and precision medicine. In this study, we evaluate the capability and potential of a crowd of virtual workers—defined as vetted members of popular crowdsourcing platforms—to aid in the task of diagnosing autism. We evaluate workers when crowdsourcing the task of providing categorical ordinal behavioral ratings to unstructured public YouTube videos of children with autism and neurotypical controls. To evaluate emerging patterns that are consistent across independent crowds, we target workers from distinct geographic loci on two crowdsourcing platforms: an international group of workers on Amazon Mechanical Turk (MTurk) (N = 15) and Microworkers from Bangladesh (N = 56), Kenya (N = 23), and the Philippines (N = 25). We feed worker responses as input to a validated diagnostic machine learning classifier trained on clinician-filled electronic health records. We find that regardless of crowd platform or targeted country, workers vary in the average confidence of the correct diagnosis predicted by the classifier. The best worker responses produce a mean probability of the correct class above 80% and over one standard deviation above 50%, accuracy and variability on par with experts according to prior studies. There is a weak correlation between mean time spent on task and mean performance (r = 0.358, p = 0.005). These results demonstrate that while the crowd can produce accurate diagnoses, there are intrinsic differences in crowdworker ability to rate behavioral features. We propose a novel strategy for recruitment of crowdsourced workers to ensure high quality diagnostic evaluations of autism, and potentially many other pediatric behavioral health conditions. Our approach represents a viable step in the direction of crowd-based approaches for more scalable and affordable precision medicine." @default.
- W3048503086 created "2020-08-18" @default.
- W3048503086 creator A5012771499 @default.
- W3048503086 creator A5016990295 @default.
- W3048503086 creator A5018761586 @default.
- W3048503086 creator A5029182367 @default.
- W3048503086 creator A5029670549 @default.
- W3048503086 creator A5037490912 @default.
- W3048503086 creator A5059970218 @default.
- W3048503086 creator A5064746149 @default.
- W3048503086 creator A5069105490 @default.
- W3048503086 creator A5073093951 @default.
- W3048503086 creator A5078034241 @default.
- W3048503086 creator A5088490952 @default.
- W3048503086 creator A5089070900 @default.
- W3048503086 date "2020-08-13" @default.
- W3048503086 modified "2023-10-16" @default.
- W3048503086 title "Precision Telemedicine through Crowdsourced Machine Learning: Testing Variability of Crowd Workers for Video-Based Autism Feature Recognition" @default.
- W3048503086 cites W1973402429 @default.
- W3048503086 cites W1975228824 @default.
- W3048503086 cites W1980309199 @default.
- W3048503086 cites W2069499468 @default.
- W3048503086 cites W2090775736 @default.
- W3048503086 cites W2103185075 @default.
- W3048503086 cites W2106568252 @default.
- W3048503086 cites W2136400720 @default.
- W3048503086 cites W2140356091 @default.
- W3048503086 cites W2148076279 @default.
- W3048503086 cites W2170360510 @default.
- W3048503086 cites W2243858513 @default.
- W3048503086 cites W2285144430 @default.
- W3048503086 cites W2365254742 @default.
- W3048503086 cites W2464173335 @default.
- W3048503086 cites W2598442119 @default.
- W3048503086 cites W2754840069 @default.
- W3048503086 cites W2767203310 @default.
- W3048503086 cites W2777459094 @default.
- W3048503086 cites W2806811344 @default.
- W3048503086 cites W2808881490 @default.
- W3048503086 cites W2810349670 @default.
- W3048503086 cites W2884062515 @default.
- W3048503086 cites W2884549361 @default.
- W3048503086 cites W2894548131 @default.
- W3048503086 cites W2895763047 @default.
- W3048503086 cites W2896835644 @default.
- W3048503086 cites W2902092143 @default.
- W3048503086 cites W2925256473 @default.
- W3048503086 cites W2938164379 @default.
- W3048503086 cites W2941097695 @default.
- W3048503086 cites W2944955653 @default.
- W3048503086 cites W2953771225 @default.
- W3048503086 cites W2995210729 @default.
- W3048503086 cites W3008947750 @default.
- W3048503086 cites W3011205123 @default.
- W3048503086 cites W3100470991 @default.
- W3048503086 cites W3162804046 @default.
- W3048503086 cites W4232350767 @default.
- W3048503086 doi "https://doi.org/10.3390/jpm10030086" @default.
- W3048503086 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7564950" @default.
- W3048503086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32823538" @default.
- W3048503086 hasPublicationYear "2020" @default.
- W3048503086 type Work @default.
- W3048503086 sameAs 3048503086 @default.
- W3048503086 citedByCount "41" @default.
- W3048503086 countsByYear W30485030862020 @default.
- W3048503086 countsByYear W30485030862021 @default.
- W3048503086 countsByYear W30485030862022 @default.
- W3048503086 countsByYear W30485030862023 @default.
- W3048503086 crossrefType "journal-article" @default.
- W3048503086 hasAuthorship W3048503086A5012771499 @default.
- W3048503086 hasAuthorship W3048503086A5016990295 @default.
- W3048503086 hasAuthorship W3048503086A5018761586 @default.
- W3048503086 hasAuthorship W3048503086A5029182367 @default.
- W3048503086 hasAuthorship W3048503086A5029670549 @default.
- W3048503086 hasAuthorship W3048503086A5037490912 @default.
- W3048503086 hasAuthorship W3048503086A5059970218 @default.
- W3048503086 hasAuthorship W3048503086A5064746149 @default.
- W3048503086 hasAuthorship W3048503086A5069105490 @default.
- W3048503086 hasAuthorship W3048503086A5073093951 @default.
- W3048503086 hasAuthorship W3048503086A5078034241 @default.
- W3048503086 hasAuthorship W3048503086A5088490952 @default.
- W3048503086 hasAuthorship W3048503086A5089070900 @default.
- W3048503086 hasBestOaLocation W30485030861 @default.
- W3048503086 hasConcept C118552586 @default.
- W3048503086 hasConcept C119857082 @default.
- W3048503086 hasConcept C136764020 @default.
- W3048503086 hasConcept C154945302 @default.
- W3048503086 hasConcept C15744967 @default.
- W3048503086 hasConcept C160735492 @default.
- W3048503086 hasConcept C162324750 @default.
- W3048503086 hasConcept C205778803 @default.
- W3048503086 hasConcept C2522767166 @default.
- W3048503086 hasConcept C2778391849 @default.
- W3048503086 hasConcept C2778538070 @default.
- W3048503086 hasConcept C2779891985 @default.
- W3048503086 hasConcept C41008148 @default.
- W3048503086 hasConcept C50522688 @default.
- W3048503086 hasConcept C62230096 @default.