Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048509906> ?p ?o ?g. }
- W3048509906 endingPage "105703" @default.
- W3048509906 startingPage "105703" @default.
- W3048509906 abstract "Abstract Background and objectives Walking in water is used for rehabilitation in different pathological conditions. For the characterization of gait alterations related to pathology, gait timing assessment is of primary importance. With the widespread use of inertial sensors, several algorithms have been proposed for gait timing estimation (i.e. gait events and temporal parameters) out of the water, while an assessment of their performance for walking in water is still missing. The purpose of the present study was to assess the performance in the temporal segmentation for gait in water of 17 algorithms proposed in the literature. Methods Ten healthy volunteers mounting 5 tri-axial inertial sensors (trunk, shanks and feet) walked on dry land and in water. Seventeen different algorithms were implemented and classified based on: 1) sensor position, 2) target variable, and 3) computational approach. Gait events identified from synchronized video recordings were assumed as reference. Temporal parameters were calculated from gait events. Algorithm performance was analysed in terms of sensitivity, positive predictive value, accuracy, and repeatability. Results For walking in water, all Trunk-based algorithms provided a sensitivity lower than 81% and a positive predictive value lower than 94%, as well as acceleration-based algorithms, independently from sensor location, with the exception of two Shank-based ones. Drop in algorithm sensitivity and positive predictive value was associated to significant differences in the stride pattern of the specific analysed variables during walking in water as compared to walking on dry land, as shown by the intraclass correlation coefficient. When using Shank- or Foot-based algorithms, gait events resulted delayed, but the delay was compensated in the estimate of Stride and Step time; a general underestimation of Stance- and overestimation of Swing-time was observed, with minor exceptions. Conclusion Sensor position, target variable and computational approach determined different error distributions for different gait events and temporal parameters for walking in water. This work supports an evidence-based selection of the most appropriate algorithm for gait timing estimation for walking in water as related to the specific application, and provides relevant information for the design of new algorithms for the specific motor task." @default.
- W3048509906 created "2020-08-18" @default.
- W3048509906 creator A5010687545 @default.
- W3048509906 creator A5021936021 @default.
- W3048509906 creator A5030140856 @default.
- W3048509906 creator A5057250552 @default.
- W3048509906 date "2020-12-01" @default.
- W3048509906 modified "2023-10-14" @default.
- W3048509906 title "Timing estimation for gait in water from inertial sensor measurements: Analysis of the performance of 17 algorithms" @default.
- W3048509906 cites W1964304792 @default.
- W3048509906 cites W1969005237 @default.
- W3048509906 cites W1976099952 @default.
- W3048509906 cites W1979899459 @default.
- W3048509906 cites W1986310455 @default.
- W3048509906 cites W1989912810 @default.
- W3048509906 cites W2004588631 @default.
- W3048509906 cites W2048527918 @default.
- W3048509906 cites W2050519281 @default.
- W3048509906 cites W2053628882 @default.
- W3048509906 cites W2055130214 @default.
- W3048509906 cites W2060969870 @default.
- W3048509906 cites W2061182716 @default.
- W3048509906 cites W2066216522 @default.
- W3048509906 cites W2067808244 @default.
- W3048509906 cites W2071179264 @default.
- W3048509906 cites W2071534230 @default.
- W3048509906 cites W2079501369 @default.
- W3048509906 cites W2093690245 @default.
- W3048509906 cites W2110071011 @default.
- W3048509906 cites W2112295121 @default.
- W3048509906 cites W2112673535 @default.
- W3048509906 cites W2118192112 @default.
- W3048509906 cites W2122365325 @default.
- W3048509906 cites W2123414430 @default.
- W3048509906 cites W2124214469 @default.
- W3048509906 cites W2132279149 @default.
- W3048509906 cites W2141403362 @default.
- W3048509906 cites W2148832324 @default.
- W3048509906 cites W2153542846 @default.
- W3048509906 cites W2154741100 @default.
- W3048509906 cites W2162406024 @default.
- W3048509906 cites W2162908184 @default.
- W3048509906 cites W2339173992 @default.
- W3048509906 cites W2397367957 @default.
- W3048509906 cites W2413782574 @default.
- W3048509906 cites W2507174161 @default.
- W3048509906 cites W2586302922 @default.
- W3048509906 cites W2607487825 @default.
- W3048509906 cites W2888531427 @default.
- W3048509906 cites W2912689631 @default.
- W3048509906 doi "https://doi.org/10.1016/j.cmpb.2020.105703" @default.
- W3048509906 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32818913" @default.
- W3048509906 hasPublicationYear "2020" @default.
- W3048509906 type Work @default.
- W3048509906 sameAs 3048509906 @default.
- W3048509906 citedByCount "3" @default.
- W3048509906 countsByYear W30485099062021 @default.
- W3048509906 countsByYear W30485099062022 @default.
- W3048509906 crossrefType "journal-article" @default.
- W3048509906 hasAuthorship W3048509906A5010687545 @default.
- W3048509906 hasAuthorship W3048509906A5021936021 @default.
- W3048509906 hasAuthorship W3048509906A5030140856 @default.
- W3048509906 hasAuthorship W3048509906A5057250552 @default.
- W3048509906 hasConcept C111919701 @default.
- W3048509906 hasConcept C11413529 @default.
- W3048509906 hasConcept C121332964 @default.
- W3048509906 hasConcept C127413603 @default.
- W3048509906 hasConcept C151800584 @default.
- W3048509906 hasConcept C154945302 @default.
- W3048509906 hasConcept C173386949 @default.
- W3048509906 hasConcept C173906292 @default.
- W3048509906 hasConcept C201995342 @default.
- W3048509906 hasConcept C41008148 @default.
- W3048509906 hasConcept C62520636 @default.
- W3048509906 hasConcept C71924100 @default.
- W3048509906 hasConcept C79061980 @default.
- W3048509906 hasConcept C79403827 @default.
- W3048509906 hasConcept C89805583 @default.
- W3048509906 hasConcept C96250715 @default.
- W3048509906 hasConcept C99508421 @default.
- W3048509906 hasConceptScore W3048509906C111919701 @default.
- W3048509906 hasConceptScore W3048509906C11413529 @default.
- W3048509906 hasConceptScore W3048509906C121332964 @default.
- W3048509906 hasConceptScore W3048509906C127413603 @default.
- W3048509906 hasConceptScore W3048509906C151800584 @default.
- W3048509906 hasConceptScore W3048509906C154945302 @default.
- W3048509906 hasConceptScore W3048509906C173386949 @default.
- W3048509906 hasConceptScore W3048509906C173906292 @default.
- W3048509906 hasConceptScore W3048509906C201995342 @default.
- W3048509906 hasConceptScore W3048509906C41008148 @default.
- W3048509906 hasConceptScore W3048509906C62520636 @default.
- W3048509906 hasConceptScore W3048509906C71924100 @default.
- W3048509906 hasConceptScore W3048509906C79061980 @default.
- W3048509906 hasConceptScore W3048509906C79403827 @default.
- W3048509906 hasConceptScore W3048509906C89805583 @default.
- W3048509906 hasConceptScore W3048509906C96250715 @default.
- W3048509906 hasConceptScore W3048509906C99508421 @default.
- W3048509906 hasLocation W30485099061 @default.