Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048528067> ?p ?o ?g. }
- W3048528067 endingPage "IM36" @default.
- W3048528067 startingPage "IM27" @default.
- W3048528067 abstract "Subsurface petrophysical properties usually differ between different reservoirs, which affects lithology identification, especially for unconventional reservoirs. Thus, the lithology identification of subsurface reservoirs is a challenging task. Machine learning can be regarded as an effective method for using existing data for lithology prediction. By combining the hidden Markov model and random forests, we have adopted a novel method for lithology identification. The hidden Markov model provides a new hidden feature from elastic parameters, which is associated with unsupervised learning. Because elastic parameters are determined by petrophysical properties, the hidden feature may reveal an inner relationship of the petrophysical properties, which can expand the sample space. Then, with the new feature and the elastic parameters, the random forest method is adopted for lithology identification. In the prediction framework, the parameters of the hidden Markov model are updated until a satisfactory hidden feature is obtained. By analysis of synthetic and well-logging data, the superiority of the proposed method is demonstrated. Field seismic data application further proves the validity of the method. Numerical results show that the predicted lithology and shale content match well with real logging data." @default.
- W3048528067 created "2020-08-18" @default.
- W3048528067 creator A5040170630 @default.
- W3048528067 creator A5040899817 @default.
- W3048528067 creator A5055786940 @default.
- W3048528067 creator A5056469679 @default.
- W3048528067 creator A5065220600 @default.
- W3048528067 date "2020-11-01" @default.
- W3048528067 modified "2023-10-15" @default.
- W3048528067 title "An improved method for lithology identification based on a hidden Markov model and random forests" @default.
- W3048528067 cites W1192997862 @default.
- W3048528067 cites W1559951670 @default.
- W3048528067 cites W1981362166 @default.
- W3048528067 cites W1984680919 @default.
- W3048528067 cites W2001360985 @default.
- W3048528067 cites W2009157371 @default.
- W3048528067 cites W2015624944 @default.
- W3048528067 cites W2036530475 @default.
- W3048528067 cites W2039091575 @default.
- W3048528067 cites W2047875689 @default.
- W3048528067 cites W2073397801 @default.
- W3048528067 cites W2082667383 @default.
- W3048528067 cites W2091374137 @default.
- W3048528067 cites W2099609108 @default.
- W3048528067 cites W2108011640 @default.
- W3048528067 cites W2113250053 @default.
- W3048528067 cites W2125838338 @default.
- W3048528067 cites W2136191254 @default.
- W3048528067 cites W2167727917 @default.
- W3048528067 cites W2170995602 @default.
- W3048528067 cites W2208858913 @default.
- W3048528067 cites W2336445183 @default.
- W3048528067 cites W2584866998 @default.
- W3048528067 cites W2766070882 @default.
- W3048528067 cites W2767134721 @default.
- W3048528067 cites W2789508474 @default.
- W3048528067 cites W2794333831 @default.
- W3048528067 cites W2834213610 @default.
- W3048528067 cites W2894410771 @default.
- W3048528067 cites W2898347473 @default.
- W3048528067 cites W2902064445 @default.
- W3048528067 cites W2911964244 @default.
- W3048528067 cites W2913776725 @default.
- W3048528067 cites W2955079094 @default.
- W3048528067 cites W2982350982 @default.
- W3048528067 cites W2984345074 @default.
- W3048528067 cites W2995858244 @default.
- W3048528067 cites W3011415648 @default.
- W3048528067 cites W4256129314 @default.
- W3048528067 cites W787938927 @default.
- W3048528067 doi "https://doi.org/10.1190/geo2020-0108.1" @default.
- W3048528067 hasPublicationYear "2020" @default.
- W3048528067 type Work @default.
- W3048528067 sameAs 3048528067 @default.
- W3048528067 citedByCount "15" @default.
- W3048528067 countsByYear W30485280672021 @default.
- W3048528067 countsByYear W30485280672022 @default.
- W3048528067 countsByYear W30485280672023 @default.
- W3048528067 crossrefType "journal-article" @default.
- W3048528067 hasAuthorship W3048528067A5040170630 @default.
- W3048528067 hasAuthorship W3048528067A5040899817 @default.
- W3048528067 hasAuthorship W3048528067A5055786940 @default.
- W3048528067 hasAuthorship W3048528067A5056469679 @default.
- W3048528067 hasAuthorship W3048528067A5065220600 @default.
- W3048528067 hasConcept C115961682 @default.
- W3048528067 hasConcept C116834253 @default.
- W3048528067 hasConcept C119857082 @default.
- W3048528067 hasConcept C122792734 @default.
- W3048528067 hasConcept C124101348 @default.
- W3048528067 hasConcept C124504099 @default.
- W3048528067 hasConcept C127313418 @default.
- W3048528067 hasConcept C138885662 @default.
- W3048528067 hasConcept C14641988 @default.
- W3048528067 hasConcept C153180895 @default.
- W3048528067 hasConcept C154945302 @default.
- W3048528067 hasConcept C169258074 @default.
- W3048528067 hasConcept C187320778 @default.
- W3048528067 hasConcept C23224414 @default.
- W3048528067 hasConcept C2776401178 @default.
- W3048528067 hasConcept C2778045648 @default.
- W3048528067 hasConcept C35817400 @default.
- W3048528067 hasConcept C41008148 @default.
- W3048528067 hasConcept C41895202 @default.
- W3048528067 hasConcept C46293882 @default.
- W3048528067 hasConcept C5900021 @default.
- W3048528067 hasConcept C59822182 @default.
- W3048528067 hasConcept C6648577 @default.
- W3048528067 hasConcept C78762247 @default.
- W3048528067 hasConcept C8058405 @default.
- W3048528067 hasConcept C83665646 @default.
- W3048528067 hasConcept C86803240 @default.
- W3048528067 hasConceptScore W3048528067C115961682 @default.
- W3048528067 hasConceptScore W3048528067C116834253 @default.
- W3048528067 hasConceptScore W3048528067C119857082 @default.
- W3048528067 hasConceptScore W3048528067C122792734 @default.
- W3048528067 hasConceptScore W3048528067C124101348 @default.
- W3048528067 hasConceptScore W3048528067C124504099 @default.
- W3048528067 hasConceptScore W3048528067C127313418 @default.