Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048531565> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W3048531565 endingPage "7" @default.
- W3048531565 startingPage "49" @default.
- W3048531565 abstract "Overweight vehicles are a common source of pavement and bridge damage. Especially mobile crane vehicles are often beyond legal per-axle weight limits, carrying their lifting blocks and ballast on the vehicle instead of on a separate trailer. To prevent road deterioration, the detection of overweight cranes is desirable for law enforcement. As the source of crane weight is visible, we propose a camera-based detection system based on convolutional neural networks. We iteratively label our dataset to vastly reduce labeling and extensively investigate the impact of image resolution, network depth and dataset size to choose optimal parameters during iterative labeling. We show that iterative labeling with intelligently chosen image resolutions and network depths can vastly improve (up to 70×) the speed at which data can be labeled, to train classification systems for practical surveillance applications. The experiments provide an estimate of the optimal amount of data required to train an effective classification system, which is valuable for classification problems in general. The proposed system achieves an AUC score of 0.985 for distinguishing cranes from other vehicles and an AUC of 0.92 and 0.77 on lifting block and ballast classification, respectively. The proposed classification system enables effective road monitoring for semi-automatic law enforcement and is attractive for rare-class extraction in general surveillance classification problems." @default.
- W3048531565 created "2020-08-18" @default.
- W3048531565 creator A5013964928 @default.
- W3048531565 creator A5021801126 @default.
- W3048531565 creator A5029008213 @default.
- W3048531565 creator A5076728626 @default.
- W3048531565 date "2020-01-26" @default.
- W3048531565 modified "2023-09-25" @default.
- W3048531565 title "Rare-Class Extraction Using Cascaded Pretrained Networks Applied to Crane Classification" @default.
- W3048531565 doi "https://doi.org/10.2352/issn.2470-1173.2020.6.iriacv-049" @default.
- W3048531565 hasPublicationYear "2020" @default.
- W3048531565 type Work @default.
- W3048531565 sameAs 3048531565 @default.
- W3048531565 citedByCount "0" @default.
- W3048531565 crossrefType "journal-article" @default.
- W3048531565 hasAuthorship W3048531565A5013964928 @default.
- W3048531565 hasAuthorship W3048531565A5021801126 @default.
- W3048531565 hasAuthorship W3048531565A5029008213 @default.
- W3048531565 hasAuthorship W3048531565A5076728626 @default.
- W3048531565 hasConcept C115961682 @default.
- W3048531565 hasConcept C119599485 @default.
- W3048531565 hasConcept C124101348 @default.
- W3048531565 hasConcept C125907379 @default.
- W3048531565 hasConcept C127413603 @default.
- W3048531565 hasConcept C129727815 @default.
- W3048531565 hasConcept C153180895 @default.
- W3048531565 hasConcept C154945302 @default.
- W3048531565 hasConcept C2524010 @default.
- W3048531565 hasConcept C2777210771 @default.
- W3048531565 hasConcept C2777212361 @default.
- W3048531565 hasConcept C2779101595 @default.
- W3048531565 hasConcept C31258907 @default.
- W3048531565 hasConcept C33923547 @default.
- W3048531565 hasConcept C41008148 @default.
- W3048531565 hasConcept C75294576 @default.
- W3048531565 hasConcept C78519656 @default.
- W3048531565 hasConcept C81363708 @default.
- W3048531565 hasConceptScore W3048531565C115961682 @default.
- W3048531565 hasConceptScore W3048531565C119599485 @default.
- W3048531565 hasConceptScore W3048531565C124101348 @default.
- W3048531565 hasConceptScore W3048531565C125907379 @default.
- W3048531565 hasConceptScore W3048531565C127413603 @default.
- W3048531565 hasConceptScore W3048531565C129727815 @default.
- W3048531565 hasConceptScore W3048531565C153180895 @default.
- W3048531565 hasConceptScore W3048531565C154945302 @default.
- W3048531565 hasConceptScore W3048531565C2524010 @default.
- W3048531565 hasConceptScore W3048531565C2777210771 @default.
- W3048531565 hasConceptScore W3048531565C2777212361 @default.
- W3048531565 hasConceptScore W3048531565C2779101595 @default.
- W3048531565 hasConceptScore W3048531565C31258907 @default.
- W3048531565 hasConceptScore W3048531565C33923547 @default.
- W3048531565 hasConceptScore W3048531565C41008148 @default.
- W3048531565 hasConceptScore W3048531565C75294576 @default.
- W3048531565 hasConceptScore W3048531565C78519656 @default.
- W3048531565 hasConceptScore W3048531565C81363708 @default.
- W3048531565 hasIssue "6" @default.
- W3048531565 hasLocation W30485315651 @default.
- W3048531565 hasOpenAccess W3048531565 @default.
- W3048531565 hasPrimaryLocation W30485315651 @default.
- W3048531565 hasRelatedWork W1982635469 @default.
- W3048531565 hasRelatedWork W2726121760 @default.
- W3048531565 hasRelatedWork W2732542196 @default.
- W3048531565 hasRelatedWork W2760085659 @default.
- W3048531565 hasRelatedWork W2912288872 @default.
- W3048531565 hasRelatedWork W2969680539 @default.
- W3048531565 hasRelatedWork W3086857729 @default.
- W3048531565 hasRelatedWork W3153891452 @default.
- W3048531565 hasRelatedWork W4207027803 @default.
- W3048531565 hasRelatedWork W564581980 @default.
- W3048531565 hasVolume "2020" @default.
- W3048531565 isParatext "false" @default.
- W3048531565 isRetracted "false" @default.
- W3048531565 magId "3048531565" @default.
- W3048531565 workType "article" @default.