Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048551002> ?p ?o ?g. }
- W3048551002 endingPage "4861" @default.
- W3048551002 startingPage "4838" @default.
- W3048551002 abstract "Purpose To compare the performance of iterative direct and indirect parametric reconstruction methods with indirect deep learning‐based reconstruction methods in estimating tracer‐kinetic parameters from highly undersampled DCE‐MR Imaging breast data and provide a systematic comparison of the same. Methods Estimation of tracer‐kinetic parameters using indirect methods from undersampled data requires to reconstruct the anatomical images initially by solving an inverse problem. This reconstructed images gets utilized in turn to estimate the tracer‐kinetic parameters. In direct estimation, the parameters are estimated without reconstructing the anatomical images. Both problems are ill‐posed and are typically solved using prior‐based regularization or using deep learning. In this study, for indirect estimation, two deep learning‐based reconstruction frameworks namely, ISTA‐Net + and MODL, were utilized. For direct and indirect parametric estimation, sparsity inducing priors ( L 1 and Total‐Variation) and limited memory Broyden‐Fletcher‐Goldfarb‐Shanno algorithm as solver was deployed. The performance of these techniques were compared systematically in estimation of vascular permeability ( ) from undersampled DCE‐MRI breast data using Patlak as pharmaco‐kinetic model. The experiments involved retrospective undersampling of the data 20×, 50×, and 100× and compared the results using PSNR, nRMSE, SSIM, and Xydeas metrics. The maps estimated from fully sampled data were utilized as ground truth. The developed code was made available as https://github.com/Medical‐Imaging‐Group/DCE‐MRI‐Compare open‐source for enthusiastic users. Results The reconstruction methods performance was evaluated using ten patients breast data (five patients each for training and testing). Consistent with other studies, the results indicate that direct parametric reconstruction methods provide improved performance compared to the indirect parameteric reconstruction methods. The results also indicate that for 20× undersampling, deep learning‐based methods performs better or at par with direct estimation in terms of PSNR, SSIM, and nRMSE. However, for higher undersampling rates (50× and 100×) direct estimation performs better in all metrics. For all undersampling rates, direct reconstruction performed better in terms of Xydeas metric, which indicated fidelity in magnitude and orientation of edges. Conclusion Deep learning‐based indirect techniques perform at par with direct estimation techniques for lower undersampling rates in the breast DCE‐MR imaging. At higher undersampling rates, they are not able to provide much needed generalization. Direct estimation techniques are able to provide more accurate results than both deep learning‐ and parametric‐based indirect methods in these high undersampling scenarios." @default.
- W3048551002 created "2020-08-18" @default.
- W3048551002 creator A5039876621 @default.
- W3048551002 creator A5068561041 @default.
- W3048551002 date "2020-09-06" @default.
- W3048551002 modified "2023-09-27" @default.
- W3048551002 title "Comparison of iterative parametric and indirect deep learning‐based reconstruction methods in highly undersampled DCE‐MR Imaging of the breast" @default.
- W3048551002 cites W1482297123 @default.
- W3048551002 cites W1509358020 @default.
- W3048551002 cites W1895901121 @default.
- W3048551002 cites W1965728888 @default.
- W3048551002 cites W1968065333 @default.
- W3048551002 cites W2000594266 @default.
- W3048551002 cites W2001974555 @default.
- W3048551002 cites W2032558189 @default.
- W3048551002 cites W2036913456 @default.
- W3048551002 cites W2038497950 @default.
- W3048551002 cites W2038833688 @default.
- W3048551002 cites W2042098439 @default.
- W3048551002 cites W2042949464 @default.
- W3048551002 cites W2047815743 @default.
- W3048551002 cites W2051434435 @default.
- W3048551002 cites W2083927153 @default.
- W3048551002 cites W2084824769 @default.
- W3048551002 cites W2087416986 @default.
- W3048551002 cites W2090371024 @default.
- W3048551002 cites W2091484864 @default.
- W3048551002 cites W2092078486 @default.
- W3048551002 cites W2097331836 @default.
- W3048551002 cites W2101675075 @default.
- W3048551002 cites W2108610949 @default.
- W3048551002 cites W2112284512 @default.
- W3048551002 cites W2133665775 @default.
- W3048551002 cites W2136941708 @default.
- W3048551002 cites W2167714086 @default.
- W3048551002 cites W2176563895 @default.
- W3048551002 cites W2315013432 @default.
- W3048551002 cites W2339319747 @default.
- W3048551002 cites W2550323446 @default.
- W3048551002 cites W2602058349 @default.
- W3048551002 cites W2756142802 @default.
- W3048551002 cites W2798559986 @default.
- W3048551002 cites W2908796452 @default.
- W3048551002 cites W2963299521 @default.
- W3048551002 cites W2963375526 @default.
- W3048551002 cites W2963814976 @default.
- W3048551002 cites W2990057444 @default.
- W3048551002 cites W3027181865 @default.
- W3048551002 cites W3100730608 @default.
- W3048551002 cites W4230727657 @default.
- W3048551002 cites W4292363360 @default.
- W3048551002 doi "https://doi.org/10.1002/mp.14447" @default.
- W3048551002 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32780871" @default.
- W3048551002 hasPublicationYear "2020" @default.
- W3048551002 type Work @default.
- W3048551002 sameAs 3048551002 @default.
- W3048551002 citedByCount "4" @default.
- W3048551002 countsByYear W30485510022021 @default.
- W3048551002 countsByYear W30485510022022 @default.
- W3048551002 crossrefType "journal-article" @default.
- W3048551002 hasAuthorship W3048551002A5039876621 @default.
- W3048551002 hasAuthorship W3048551002A5068561041 @default.
- W3048551002 hasConcept C105795698 @default.
- W3048551002 hasConcept C108583219 @default.
- W3048551002 hasConcept C11413529 @default.
- W3048551002 hasConcept C117251300 @default.
- W3048551002 hasConcept C124851039 @default.
- W3048551002 hasConcept C136536468 @default.
- W3048551002 hasConcept C141379421 @default.
- W3048551002 hasConcept C146849305 @default.
- W3048551002 hasConcept C153180895 @default.
- W3048551002 hasConcept C154945302 @default.
- W3048551002 hasConcept C199360897 @default.
- W3048551002 hasConcept C2778770139 @default.
- W3048551002 hasConcept C31601959 @default.
- W3048551002 hasConcept C33923547 @default.
- W3048551002 hasConcept C41008148 @default.
- W3048551002 hasConceptScore W3048551002C105795698 @default.
- W3048551002 hasConceptScore W3048551002C108583219 @default.
- W3048551002 hasConceptScore W3048551002C11413529 @default.
- W3048551002 hasConceptScore W3048551002C117251300 @default.
- W3048551002 hasConceptScore W3048551002C124851039 @default.
- W3048551002 hasConceptScore W3048551002C136536468 @default.
- W3048551002 hasConceptScore W3048551002C141379421 @default.
- W3048551002 hasConceptScore W3048551002C146849305 @default.
- W3048551002 hasConceptScore W3048551002C153180895 @default.
- W3048551002 hasConceptScore W3048551002C154945302 @default.
- W3048551002 hasConceptScore W3048551002C199360897 @default.
- W3048551002 hasConceptScore W3048551002C2778770139 @default.
- W3048551002 hasConceptScore W3048551002C31601959 @default.
- W3048551002 hasConceptScore W3048551002C33923547 @default.
- W3048551002 hasConceptScore W3048551002C41008148 @default.
- W3048551002 hasIssue "10" @default.
- W3048551002 hasLocation W30485510021 @default.
- W3048551002 hasOpenAccess W3048551002 @default.
- W3048551002 hasPrimaryLocation W30485510021 @default.
- W3048551002 hasRelatedWork W1999371807 @default.
- W3048551002 hasRelatedWork W2023143321 @default.