Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048553842> ?p ?o ?g. }
- W3048553842 endingPage "4747" @default.
- W3048553842 startingPage "4731" @default.
- W3048553842 abstract "By leveraging the performance of small and medium-scale data centers (SMSDCs), which are involved in high-performance computing, data centers are central to the current modern industrial business world. Extensive enhancements in the SMSDC infrastructure comprise a diverse set of connected devices that disseminate resources to the end users. The high certainty workloads of end users and over resource provisioning result in high power consumption in SMSDCs, which are pivotal factors contributing to high carbon footprints from SMSDCs. The excessive emission of CO2 is higher in SMSDCs compared with that of hyperscale data centers (HSDCs). An exorbitant amount of electricity is utilized by 8.6 million data centers worldwide, and is expected to increase by up to 13% in 2030. The power requirement of an SMSDC domain is expected to be 5% of the global power production. However, the power consumption of SMSDCs changes annually. To aid SMSDCs, machine learning prediction is deployed. Literature review indicates that many studies have focused on the recurring issues of HSDCs rather than those of SMSDC. Herein, a regressive predictive analysis, i.e., multi-output random forest regressor, is proposed to forecast the resource usage and power utilization of virtual machines. These prediction results in diminishes the power utilization of SMSDC whilst reduces the CO2 emission from SMSDC. The obtained result shows that the proposed approach yields better predictions than other single-output prediction methods for future resource demand from end users." @default.
- W3048553842 created "2020-08-18" @default.
- W3048553842 creator A5037490865 @default.
- W3048553842 creator A5039020291 @default.
- W3048553842 creator A5062941714 @default.
- W3048553842 date "2020-10-07" @default.
- W3048553842 modified "2023-09-27" @default.
- W3048553842 title "Efficient resource prediction model for small and medium scale cloud data centers" @default.
- W3048553842 cites W1046653152 @default.
- W3048553842 cites W1982659654 @default.
- W3048553842 cites W1984255960 @default.
- W3048553842 cites W2018093805 @default.
- W3048553842 cites W2080046268 @default.
- W3048553842 cites W2084341220 @default.
- W3048553842 cites W2089126265 @default.
- W3048553842 cites W2096352448 @default.
- W3048553842 cites W2138583691 @default.
- W3048553842 cites W2278665952 @default.
- W3048553842 cites W2406349003 @default.
- W3048553842 cites W2511380230 @default.
- W3048553842 cites W2548268629 @default.
- W3048553842 cites W2560531208 @default.
- W3048553842 cites W2718193527 @default.
- W3048553842 cites W2763398542 @default.
- W3048553842 cites W2764100055 @default.
- W3048553842 cites W2783399051 @default.
- W3048553842 cites W2791315675 @default.
- W3048553842 cites W2795993366 @default.
- W3048553842 cites W2803075950 @default.
- W3048553842 cites W2891656163 @default.
- W3048553842 cites W2904362452 @default.
- W3048553842 cites W2905434251 @default.
- W3048553842 cites W2911964244 @default.
- W3048553842 cites W2951142264 @default.
- W3048553842 cites W2986061801 @default.
- W3048553842 cites W2988041821 @default.
- W3048553842 cites W4239677523 @default.
- W3048553842 cites W4241568583 @default.
- W3048553842 doi "https://doi.org/10.3233/jifs-200653" @default.
- W3048553842 hasPublicationYear "2020" @default.
- W3048553842 type Work @default.
- W3048553842 sameAs 3048553842 @default.
- W3048553842 citedByCount "3" @default.
- W3048553842 countsByYear W30485538422022 @default.
- W3048553842 crossrefType "journal-article" @default.
- W3048553842 hasAuthorship W3048553842A5037490865 @default.
- W3048553842 hasAuthorship W3048553842A5039020291 @default.
- W3048553842 hasAuthorship W3048553842A5062941714 @default.
- W3048553842 hasConcept C101780184 @default.
- W3048553842 hasConcept C111919701 @default.
- W3048553842 hasConcept C119599485 @default.
- W3048553842 hasConcept C121332964 @default.
- W3048553842 hasConcept C127413603 @default.
- W3048553842 hasConcept C163258240 @default.
- W3048553842 hasConcept C172191483 @default.
- W3048553842 hasConcept C206345919 @default.
- W3048553842 hasConcept C206658404 @default.
- W3048553842 hasConcept C2778755073 @default.
- W3048553842 hasConcept C2984118289 @default.
- W3048553842 hasConcept C31258907 @default.
- W3048553842 hasConcept C41008148 @default.
- W3048553842 hasConcept C62520636 @default.
- W3048553842 hasConcept C76155785 @default.
- W3048553842 hasConcept C79974875 @default.
- W3048553842 hasConceptScore W3048553842C101780184 @default.
- W3048553842 hasConceptScore W3048553842C111919701 @default.
- W3048553842 hasConceptScore W3048553842C119599485 @default.
- W3048553842 hasConceptScore W3048553842C121332964 @default.
- W3048553842 hasConceptScore W3048553842C127413603 @default.
- W3048553842 hasConceptScore W3048553842C163258240 @default.
- W3048553842 hasConceptScore W3048553842C172191483 @default.
- W3048553842 hasConceptScore W3048553842C206345919 @default.
- W3048553842 hasConceptScore W3048553842C206658404 @default.
- W3048553842 hasConceptScore W3048553842C2778755073 @default.
- W3048553842 hasConceptScore W3048553842C2984118289 @default.
- W3048553842 hasConceptScore W3048553842C31258907 @default.
- W3048553842 hasConceptScore W3048553842C41008148 @default.
- W3048553842 hasConceptScore W3048553842C62520636 @default.
- W3048553842 hasConceptScore W3048553842C76155785 @default.
- W3048553842 hasConceptScore W3048553842C79974875 @default.
- W3048553842 hasIssue "3" @default.
- W3048553842 hasLocation W30485538421 @default.
- W3048553842 hasOpenAccess W3048553842 @default.
- W3048553842 hasPrimaryLocation W30485538421 @default.
- W3048553842 hasRelatedWork W1991058552 @default.
- W3048553842 hasRelatedWork W2082123573 @default.
- W3048553842 hasRelatedWork W2207720586 @default.
- W3048553842 hasRelatedWork W2460961301 @default.
- W3048553842 hasRelatedWork W2470823666 @default.
- W3048553842 hasRelatedWork W2525243121 @default.
- W3048553842 hasRelatedWork W3203426572 @default.
- W3048553842 hasRelatedWork W39062624 @default.
- W3048553842 hasRelatedWork W4255554558 @default.
- W3048553842 hasRelatedWork W2462977640 @default.
- W3048553842 hasVolume "39" @default.
- W3048553842 isParatext "false" @default.
- W3048553842 isRetracted "false" @default.
- W3048553842 magId "3048553842" @default.