Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048557789> ?p ?o ?g. }
- W3048557789 endingPage "4756" @default.
- W3048557789 startingPage "4740" @default.
- W3048557789 abstract "Plasmonic nanostructures are important across diverse applications from sensing to renewable energy. Periodic porous array structures are particularly attractive because such topography offers a means to encapsulate or capture solution phase species and combines both propagating and localised plasmonic modes offering versatile addressability. However, in analytical spectroscopic applications, periodic pore arrays have typically reported weaker plasmonic signal enhancement compared to particulate structures. This may be addressed by introducing additional nano-structuring into the array to promote plasmonic coupling that promotes electric field-enhancement, whilst retaining pore structure. Introducing nanoparticle structures into the pores is a useful means to promote such coupling. However, current approaches rely on either expensive top-down methods or on bottom-up methods that yield random particle placement and distribution. This report describes a low cost, top-down technique for preparation of nano-sub-structured plasmonic pore arrays in a highly reproducible manner that can be applied to build arrays extending over macroscopic areas of mm2 to cm2. The method exploits oxygen plasma etching, under controlled conditions, of the cavity encapsulated templating polystyrene (PS) spheres used to create the periodic array. Subsequent metal deposition leads to reproducible nano-structuring within the wells of the pore array, coined in-cavity nanoparticles (icNPs). This approach was demonstrated across periodic arrays with pore/sphere diameters ranging from 500 nm to 3 μm and reliably improved the plasmonic properties of the substrate across all array dimensions compared to analogous periodic arrays without the nano-structuring. The enhancement factors achieved for metal enhanced emission and surface enhanced Raman spectroscopy depended on the substrate dimensions, with the best performance achieved for nanostructured 2 μm diameter pore arrays, where a more than 104 improvement over Surface Enhanced Raman Spectroscopy (SERS) and 200-fold improvement over Metal Enhanced Fluorescence (MEF) were observed for these substrates compared with analogous unmodified pore arrays. The experiments were supported by Finite-Difference Time-Domain (FDTD) calculations used to simulate the electric field distribution as a function of pore nano-structuring." @default.
- W3048557789 created "2020-08-18" @default.
- W3048557789 creator A5014014133 @default.
- W3048557789 creator A5050924330 @default.
- W3048557789 creator A5088333292 @default.
- W3048557789 date "2020-01-01" @default.
- W3048557789 modified "2023-09-25" @default.
- W3048557789 title "Nano-substructured plasmonic pore arrays: a robust, low cost route to reproducible hierarchical structures extended across macroscopic dimensions" @default.
- W3048557789 cites W1935374428 @default.
- W3048557789 cites W1963536772 @default.
- W3048557789 cites W1967512642 @default.
- W3048557789 cites W1968692222 @default.
- W3048557789 cites W1969595186 @default.
- W3048557789 cites W1971147404 @default.
- W3048557789 cites W1982464522 @default.
- W3048557789 cites W1983711431 @default.
- W3048557789 cites W1988211164 @default.
- W3048557789 cites W1990453207 @default.
- W3048557789 cites W1994713549 @default.
- W3048557789 cites W1999173254 @default.
- W3048557789 cites W2000640925 @default.
- W3048557789 cites W2008474686 @default.
- W3048557789 cites W2011414743 @default.
- W3048557789 cites W2014320541 @default.
- W3048557789 cites W2015027777 @default.
- W3048557789 cites W2015901026 @default.
- W3048557789 cites W2018631442 @default.
- W3048557789 cites W2021843457 @default.
- W3048557789 cites W2022417296 @default.
- W3048557789 cites W2024240793 @default.
- W3048557789 cites W2026899726 @default.
- W3048557789 cites W2027489121 @default.
- W3048557789 cites W2027708955 @default.
- W3048557789 cites W2028780957 @default.
- W3048557789 cites W2030124038 @default.
- W3048557789 cites W2034561752 @default.
- W3048557789 cites W2036001101 @default.
- W3048557789 cites W2042076247 @default.
- W3048557789 cites W2042444464 @default.
- W3048557789 cites W2043520905 @default.
- W3048557789 cites W2044799797 @default.
- W3048557789 cites W2047587406 @default.
- W3048557789 cites W2057432468 @default.
- W3048557789 cites W2057495852 @default.
- W3048557789 cites W2060690784 @default.
- W3048557789 cites W2063553946 @default.
- W3048557789 cites W2064796543 @default.
- W3048557789 cites W2065429003 @default.
- W3048557789 cites W2067539752 @default.
- W3048557789 cites W2067946592 @default.
- W3048557789 cites W2068436560 @default.
- W3048557789 cites W2076440513 @default.
- W3048557789 cites W2078788963 @default.
- W3048557789 cites W2078952465 @default.
- W3048557789 cites W2079954478 @default.
- W3048557789 cites W2083926174 @default.
- W3048557789 cites W2086982690 @default.
- W3048557789 cites W2092667626 @default.
- W3048557789 cites W2092923887 @default.
- W3048557789 cites W2093478793 @default.
- W3048557789 cites W2093678239 @default.
- W3048557789 cites W2095338456 @default.
- W3048557789 cites W2115797520 @default.
- W3048557789 cites W2121830147 @default.
- W3048557789 cites W2122028423 @default.
- W3048557789 cites W2122237007 @default.
- W3048557789 cites W2122501407 @default.
- W3048557789 cites W2127248401 @default.
- W3048557789 cites W2136427321 @default.
- W3048557789 cites W2137864764 @default.
- W3048557789 cites W2146808345 @default.
- W3048557789 cites W2150334215 @default.
- W3048557789 cites W2151344666 @default.
- W3048557789 cites W2165597585 @default.
- W3048557789 cites W2279642169 @default.
- W3048557789 cites W2316765574 @default.
- W3048557789 cites W2319825913 @default.
- W3048557789 cites W2466612606 @default.
- W3048557789 cites W2478135502 @default.
- W3048557789 cites W2556416228 @default.
- W3048557789 cites W2603529900 @default.
- W3048557789 cites W2622466909 @default.
- W3048557789 cites W2694085773 @default.
- W3048557789 cites W2743568691 @default.
- W3048557789 cites W2751922276 @default.
- W3048557789 cites W2777955334 @default.
- W3048557789 cites W2779716391 @default.
- W3048557789 cites W2809167044 @default.
- W3048557789 cites W2927441459 @default.
- W3048557789 cites W2946260162 @default.
- W3048557789 cites W2950429226 @default.
- W3048557789 cites W2952631283 @default.
- W3048557789 cites W2971763914 @default.
- W3048557789 cites W2971952018 @default.
- W3048557789 cites W2991650974 @default.
- W3048557789 cites W3105942225 @default.
- W3048557789 cites W3142667883 @default.
- W3048557789 doi "https://doi.org/10.1039/d0na00527d" @default.