Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048561590> ?p ?o ?g. }
- W3048561590 endingPage "36" @default.
- W3048561590 startingPage "1" @default.
- W3048561590 abstract "The research objective of this paper is to handle situations where the empirical distribution of multivariate real-valued data is elliptical and with heavy tails. Many statistical models already exist that accommodate these peculiarities. This paper enriches this branch of literature by introducing the multivariate tail-inflated normal (MTIN) distribution, an elliptical heavy tails generalization of the multivariate normal (MN). The MTIN belongs to the family of MN scale mixtures by choosing a convenient continuous uniform as mixing distribution. Moreover, it has a closed-form for the probability density function characterized by only one additional ‘inflation’ parameter, with respect to the nested MN, governing the tail-weight. The moment generating function, and the first four moments, are also derived; interestingly, the latter always exist and the excess kurtosis can assume any positive value. The method of moments and maximum likelihood (ML) are considered for estimation. As concerns the latter, a direct approach, as well as a variant of the EM algorithm (namely, the ECME algorithm), are illustrated. Furthermore, a way to approximate covariance matrix of the ML estimator is suggested and the existence of the ML estimates is evaluated. Since the inflation parameter is estimated from the data, robust estimates of the mean vector of the nested MN distribution are automatically obtained by down-weighting. Simulations are performed to compare the estimation methods/algorithms, to investigate the ability of AIC and BIC to select among a set of candidate elliptical models, and to evaluate the robustness of these candidate methods when data are skewed. The findings are the following: ML is better than MM, direct ML is suggested for low dimensions, while the ECME algorithm is to be preferred when the number of variables is higher, AIC and BIC work comparably in selecting the true underlying model, and the MTIN outperforms the competing models in terms of robustness toward skew data. For illustrative purposes, the MTIN distribution is finally fitted to multivariate financial data and compared with other well-established multivariate elliptical distributions. The analysis shows how the proposed model represents a valid alternative to the considered competitors in terms of AIC and BIC, but also in reproducing the higher empirical kurtosis which is common in the financial context." @default.
- W3048561590 created "2020-08-18" @default.
- W3048561590 creator A5009939605 @default.
- W3048561590 creator A5029709606 @default.
- W3048561590 date "2020-08-13" @default.
- W3048561590 modified "2023-10-03" @default.
- W3048561590 title "The multivariate tail-inflated normal distribution and its application in finance" @default.
- W3048561590 cites W1526262927 @default.
- W3048561590 cites W1579925870 @default.
- W3048561590 cites W191167826 @default.
- W3048561590 cites W195191549 @default.
- W3048561590 cites W1966827292 @default.
- W3048561590 cites W1967639437 @default.
- W3048561590 cites W1971053858 @default.
- W3048561590 cites W1972566316 @default.
- W3048561590 cites W1979573625 @default.
- W3048561590 cites W1980885700 @default.
- W3048561590 cites W1994296756 @default.
- W3048561590 cites W2000031724 @default.
- W3048561590 cites W2010934254 @default.
- W3048561590 cites W2016130389 @default.
- W3048561590 cites W2016670387 @default.
- W3048561590 cites W2019448438 @default.
- W3048561590 cites W2024476015 @default.
- W3048561590 cites W2079960029 @default.
- W3048561590 cites W2118254160 @default.
- W3048561590 cites W2119938240 @default.
- W3048561590 cites W2130444042 @default.
- W3048561590 cites W2137971377 @default.
- W3048561590 cites W2141863469 @default.
- W3048561590 cites W2158196600 @default.
- W3048561590 cites W2488678869 @default.
- W3048561590 cites W2492734573 @default.
- W3048561590 cites W2493977830 @default.
- W3048561590 cites W2506362823 @default.
- W3048561590 cites W2524681876 @default.
- W3048561590 cites W2551174787 @default.
- W3048561590 cites W2770610745 @default.
- W3048561590 cites W2962730912 @default.
- W3048561590 cites W2963540081 @default.
- W3048561590 cites W2963702653 @default.
- W3048561590 cites W2972231929 @default.
- W3048561590 cites W2991541219 @default.
- W3048561590 cites W3100793648 @default.
- W3048561590 cites W3125246470 @default.
- W3048561590 doi "https://doi.org/10.1080/00949655.2020.1805451" @default.
- W3048561590 hasPublicationYear "2020" @default.
- W3048561590 type Work @default.
- W3048561590 sameAs 3048561590 @default.
- W3048561590 citedByCount "12" @default.
- W3048561590 countsByYear W30485615902020 @default.
- W3048561590 countsByYear W30485615902021 @default.
- W3048561590 countsByYear W30485615902022 @default.
- W3048561590 countsByYear W30485615902023 @default.
- W3048561590 crossrefType "journal-article" @default.
- W3048561590 hasAuthorship W3048561590A5009939605 @default.
- W3048561590 hasAuthorship W3048561590A5029709606 @default.
- W3048561590 hasBestOaLocation W30485615902 @default.
- W3048561590 hasConcept C102094743 @default.
- W3048561590 hasConcept C105795698 @default.
- W3048561590 hasConcept C121332964 @default.
- W3048561590 hasConcept C122123141 @default.
- W3048561590 hasConcept C126838900 @default.
- W3048561590 hasConcept C130545031 @default.
- W3048561590 hasConcept C1602530 @default.
- W3048561590 hasConcept C161584116 @default.
- W3048561590 hasConcept C166963901 @default.
- W3048561590 hasConcept C177384507 @default.
- W3048561590 hasConcept C179254644 @default.
- W3048561590 hasConcept C183115368 @default.
- W3048561590 hasConcept C185429906 @default.
- W3048561590 hasConcept C28826006 @default.
- W3048561590 hasConcept C33923547 @default.
- W3048561590 hasConcept C71924100 @default.
- W3048561590 hasConcept C74650414 @default.
- W3048561590 hasConceptScore W3048561590C102094743 @default.
- W3048561590 hasConceptScore W3048561590C105795698 @default.
- W3048561590 hasConceptScore W3048561590C121332964 @default.
- W3048561590 hasConceptScore W3048561590C122123141 @default.
- W3048561590 hasConceptScore W3048561590C126838900 @default.
- W3048561590 hasConceptScore W3048561590C130545031 @default.
- W3048561590 hasConceptScore W3048561590C1602530 @default.
- W3048561590 hasConceptScore W3048561590C161584116 @default.
- W3048561590 hasConceptScore W3048561590C166963901 @default.
- W3048561590 hasConceptScore W3048561590C177384507 @default.
- W3048561590 hasConceptScore W3048561590C179254644 @default.
- W3048561590 hasConceptScore W3048561590C183115368 @default.
- W3048561590 hasConceptScore W3048561590C185429906 @default.
- W3048561590 hasConceptScore W3048561590C28826006 @default.
- W3048561590 hasConceptScore W3048561590C33923547 @default.
- W3048561590 hasConceptScore W3048561590C71924100 @default.
- W3048561590 hasConceptScore W3048561590C74650414 @default.
- W3048561590 hasIssue "1" @default.
- W3048561590 hasLocation W30485615901 @default.
- W3048561590 hasLocation W30485615902 @default.
- W3048561590 hasOpenAccess W3048561590 @default.
- W3048561590 hasPrimaryLocation W30485615901 @default.
- W3048561590 hasRelatedWork W1485935964 @default.