Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048571528> ?p ?o ?g. }
- W3048571528 abstract "Machine learning has been developed dramatically and witnessed a lot of applications in various fields over the past few years. This boom originated in 2009, when a new model emerged, that is, the deep artificial neural network, which began to surpass other established mature models on some important benchmarks. Later, it was widely used in academia and industry. Ranging from image analysis to natural language processing, it fully exerted its magic and now become the state-of-the-art machine learning models. Deep neural networks have great potential in medical imaging technology, medical data analysis, medical diagnosis and other healthcare issues, and is promoted in both pre-clinical and even clinical stages. In this review, we performed an overview of some new developments and challenges in the application of machine learning to medical image analysis, with a special focus on deep learning in photoacoustic imaging. The aim of this review is threefold: (i) introducing deep learning with some important basics, (ii) reviewing recent works that apply deep learning in the entire ecological chain of photoacoustic imaging, from image reconstruction to disease diagnosis, (iii) providing some open source materials and other resources for researchers interested in applying deep learning to photoacoustic imaging." @default.
- W3048571528 created "2020-08-18" @default.
- W3048571528 creator A5034965497 @default.
- W3048571528 creator A5046668357 @default.
- W3048571528 creator A5065734652 @default.
- W3048571528 creator A5076490648 @default.
- W3048571528 date "2020-08-10" @default.
- W3048571528 modified "2023-09-27" @default.
- W3048571528 title "Deep learning for photoacoustic imaging: a survey." @default.
- W3048571528 cites W1498436455 @default.
- W3048571528 cites W1677182931 @default.
- W3048571528 cites W1903029394 @default.
- W3048571528 cites W1982367678 @default.
- W3048571528 cites W2023074414 @default.
- W3048571528 cites W2030964111 @default.
- W3048571528 cites W2045588313 @default.
- W3048571528 cites W2090234858 @default.
- W3048571528 cites W2092513871 @default.
- W3048571528 cites W2095705004 @default.
- W3048571528 cites W2097117768 @default.
- W3048571528 cites W2097683070 @default.
- W3048571528 cites W2112796928 @default.
- W3048571528 cites W2115706991 @default.
- W3048571528 cites W2117191993 @default.
- W3048571528 cites W2123045220 @default.
- W3048571528 cites W2133150693 @default.
- W3048571528 cites W2148309086 @default.
- W3048571528 cites W2155893237 @default.
- W3048571528 cites W2157048271 @default.
- W3048571528 cites W2163605009 @default.
- W3048571528 cites W2176412452 @default.
- W3048571528 cites W2186615578 @default.
- W3048571528 cites W2194775991 @default.
- W3048571528 cites W2272061938 @default.
- W3048571528 cites W2338667124 @default.
- W3048571528 cites W2401231614 @default.
- W3048571528 cites W2402144811 @default.
- W3048571528 cites W2500522403 @default.
- W3048571528 cites W2523246573 @default.
- W3048571528 cites W2533800772 @default.
- W3048571528 cites W2549139847 @default.
- W3048571528 cites W2576353028 @default.
- W3048571528 cites W2584507399 @default.
- W3048571528 cites W2592929672 @default.
- W3048571528 cites W2607941059 @default.
- W3048571528 cites W2613485993 @default.
- W3048571528 cites W2731899572 @default.
- W3048571528 cites W2742947407 @default.
- W3048571528 cites W2766447205 @default.
- W3048571528 cites W2766609443 @default.
- W3048571528 cites W2782977076 @default.
- W3048571528 cites W2784121710 @default.
- W3048571528 cites W2790288617 @default.
- W3048571528 cites W2799460839 @default.
- W3048571528 cites W2803224943 @default.
- W3048571528 cites W2804364574 @default.
- W3048571528 cites W2805392478 @default.
- W3048571528 cites W2806047578 @default.
- W3048571528 cites W2884630383 @default.
- W3048571528 cites W2889475198 @default.
- W3048571528 cites W2890251984 @default.
- W3048571528 cites W2891217869 @default.
- W3048571528 cites W2899592425 @default.
- W3048571528 cites W2905713042 @default.
- W3048571528 cites W2907811737 @default.
- W3048571528 cites W2913750405 @default.
- W3048571528 cites W2914929089 @default.
- W3048571528 cites W2916661503 @default.
- W3048571528 cites W2916979304 @default.
- W3048571528 cites W2919115771 @default.
- W3048571528 cites W2920493987 @default.
- W3048571528 cites W2920915549 @default.
- W3048571528 cites W2921208572 @default.
- W3048571528 cites W2933695234 @default.
- W3048571528 cites W2938838497 @default.
- W3048571528 cites W2949117887 @default.
- W3048571528 cites W2949382160 @default.
- W3048571528 cites W2953129827 @default.
- W3048571528 cites W2954588378 @default.
- W3048571528 cites W2955233214 @default.
- W3048571528 cites W2961921225 @default.
- W3048571528 cites W2962032435 @default.
- W3048571528 cites W2962850795 @default.
- W3048571528 cites W2963026768 @default.
- W3048571528 cites W2963323244 @default.
- W3048571528 cites W2964225427 @default.
- W3048571528 cites W2969264913 @default.
- W3048571528 cites W2974799347 @default.
- W3048571528 cites W2979341513 @default.
- W3048571528 cites W2979378912 @default.
- W3048571528 cites W2979430722 @default.
- W3048571528 cites W2979786062 @default.
- W3048571528 cites W2979937367 @default.
- W3048571528 cites W2980101931 @default.
- W3048571528 cites W2982622951 @default.
- W3048571528 cites W2985000360 @default.
- W3048571528 cites W2989855718 @default.
- W3048571528 cites W2991012758 @default.
- W3048571528 cites W2999962604 @default.
- W3048571528 cites W3007649860 @default.