Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048571578> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3048571578 endingPage "220" @default.
- W3048571578 startingPage "208" @default.
- W3048571578 abstract "
 
 
 Lane line detection is one of the important modules for Advanced Driver-Assistance System (ADAS) that are applied in the autonomous vehicle. This module work by exhibit the position of the road lane marking and providing the details of the geometrical features of the lane line structures into the intelligent system. This paper proposes the lane line marking detection using Fully Convolutional Neural Network (FCN) model by investigating the two types of input fed into the networks. RGB- channel (Red, Green, Blue) and Canny edge were used as the inputs to develop in the FCN model. The FCN approach has been proposed as one of the solution methods in mitigating the road lane detection issues due to its great performance in the application of objects detection in image or video. Previously, the RGB-channel is widely applied in the deep learning method meanwhile, the Canny-edge input has not been applied yet in the deep learning method. Therefore, this study investigates the further performance of this model by applying the canny edge as addition input besides applying only the RGB-channel. The data collections were acquired from real-time data collection. The result shows that the FCN model with the canny edge achieved a slight improvement with 96% compared to FCN with the RGB-channel with 92%.
 
 
" @default.
- W3048571578 created "2020-08-18" @default.
- W3048571578 creator A5044237134 @default.
- W3048571578 creator A5072852185 @default.
- W3048571578 creator A5076322954 @default.
- W3048571578 creator A5081758518 @default.
- W3048571578 date "2020-05-01" @default.
- W3048571578 modified "2023-10-07" @default.
- W3048571578 title "Lane Line Detection via Deep Learning Based- Approach Applying Two Types of Input into Network Model" @default.
- W3048571578 cites W2037333893 @default.
- W3048571578 cites W2088224201 @default.
- W3048571578 cites W2140880788 @default.
- W3048571578 cites W2413473068 @default.
- W3048571578 cites W2496100307 @default.
- W3048571578 cites W2505004417 @default.
- W3048571578 cites W2511969587 @default.
- W3048571578 cites W562502658 @default.
- W3048571578 cites W7746136 @default.
- W3048571578 doi "https://doi.org/10.56381/jsaem.v4i2.40" @default.
- W3048571578 hasPublicationYear "2020" @default.
- W3048571578 type Work @default.
- W3048571578 sameAs 3048571578 @default.
- W3048571578 citedByCount "1" @default.
- W3048571578 countsByYear W30485715782021 @default.
- W3048571578 crossrefType "journal-article" @default.
- W3048571578 hasAuthorship W3048571578A5044237134 @default.
- W3048571578 hasAuthorship W3048571578A5072852185 @default.
- W3048571578 hasAuthorship W3048571578A5076322954 @default.
- W3048571578 hasAuthorship W3048571578A5081758518 @default.
- W3048571578 hasBestOaLocation W30485715781 @default.
- W3048571578 hasConcept C108583219 @default.
- W3048571578 hasConcept C115961682 @default.
- W3048571578 hasConcept C127162648 @default.
- W3048571578 hasConcept C14705441 @default.
- W3048571578 hasConcept C153180895 @default.
- W3048571578 hasConcept C154945302 @default.
- W3048571578 hasConcept C162307627 @default.
- W3048571578 hasConcept C167074055 @default.
- W3048571578 hasConcept C193536780 @default.
- W3048571578 hasConcept C198352243 @default.
- W3048571578 hasConcept C2524010 @default.
- W3048571578 hasConcept C31972630 @default.
- W3048571578 hasConcept C33923547 @default.
- W3048571578 hasConcept C41008148 @default.
- W3048571578 hasConcept C76155785 @default.
- W3048571578 hasConcept C81363708 @default.
- W3048571578 hasConcept C82990744 @default.
- W3048571578 hasConcept C9417928 @default.
- W3048571578 hasConceptScore W3048571578C108583219 @default.
- W3048571578 hasConceptScore W3048571578C115961682 @default.
- W3048571578 hasConceptScore W3048571578C127162648 @default.
- W3048571578 hasConceptScore W3048571578C14705441 @default.
- W3048571578 hasConceptScore W3048571578C153180895 @default.
- W3048571578 hasConceptScore W3048571578C154945302 @default.
- W3048571578 hasConceptScore W3048571578C162307627 @default.
- W3048571578 hasConceptScore W3048571578C167074055 @default.
- W3048571578 hasConceptScore W3048571578C193536780 @default.
- W3048571578 hasConceptScore W3048571578C198352243 @default.
- W3048571578 hasConceptScore W3048571578C2524010 @default.
- W3048571578 hasConceptScore W3048571578C31972630 @default.
- W3048571578 hasConceptScore W3048571578C33923547 @default.
- W3048571578 hasConceptScore W3048571578C41008148 @default.
- W3048571578 hasConceptScore W3048571578C76155785 @default.
- W3048571578 hasConceptScore W3048571578C81363708 @default.
- W3048571578 hasConceptScore W3048571578C82990744 @default.
- W3048571578 hasConceptScore W3048571578C9417928 @default.
- W3048571578 hasIssue "2" @default.
- W3048571578 hasLocation W30485715781 @default.
- W3048571578 hasOpenAccess W3048571578 @default.
- W3048571578 hasPrimaryLocation W30485715781 @default.
- W3048571578 hasRelatedWork W1981132553 @default.
- W3048571578 hasRelatedWork W2003408770 @default.
- W3048571578 hasRelatedWork W2096980597 @default.
- W3048571578 hasRelatedWork W2284111848 @default.
- W3048571578 hasRelatedWork W2350033229 @default.
- W3048571578 hasRelatedWork W2351021533 @default.
- W3048571578 hasRelatedWork W2355177902 @default.
- W3048571578 hasRelatedWork W2412051338 @default.
- W3048571578 hasRelatedWork W2763966779 @default.
- W3048571578 hasRelatedWork W4368362586 @default.
- W3048571578 hasVolume "4" @default.
- W3048571578 isParatext "false" @default.
- W3048571578 isRetracted "false" @default.
- W3048571578 magId "3048571578" @default.
- W3048571578 workType "article" @default.