Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048571930> ?p ?o ?g. }
- W3048571930 endingPage "7370" @default.
- W3048571930 startingPage "7363" @default.
- W3048571930 abstract "Water permeation between stacked layers of hBN sheets forming 2D nanochannels is investigated using large-scale ab initio-quality molecular dynamics simulations. A high-dimensional neural network potential trained on density-functional theory calculations is employed. We simulate water in van der Waals nanocapillaries and study the impact of nanometric confinement on the structure and dynamics of water using both equilibrium and nonequilibrium methods. At an interlayer distance of 10.2 Å confinement induces a first-order phase transition resulting in a well-defined AA-stacked bilayer of hexagonal ice. In contrast, for h < 9 Å, the 2D water monolayer consists of a mixture of different locally ordered patterns of squares, pentagons, and hexagons. We found a significant change in the transport properties of confined water, particularly for monolayer water where the water-solid friction coefficient decreases to half and the diffusion coefficient increases by a factor of 4 as compared to bulk water. Accordingly, the slip-velocity is found to increase under confinement and we found that the overall permeation is dominated by monolayer water adjacent to the hBN membranes at extreme confinements. We conclude that monolayer water in addition to bilayer ice has a major contribution to water transport through 2D nanochannels." @default.
- W3048571930 created "2020-08-18" @default.
- W3048571930 creator A5014192244 @default.
- W3048571930 creator A5026774143 @default.
- W3048571930 creator A5077601154 @default.
- W3048571930 date "2020-08-10" @default.
- W3048571930 modified "2023-10-18" @default.
- W3048571930 title "Insights into Water Permeation through hBN Nanocapillaries by Ab Initio Machine Learning Molecular Dynamics Simulations" @default.
- W3048571930 cites W1576668315 @default.
- W3048571930 cites W1928037744 @default.
- W3048571930 cites W1970127494 @default.
- W3048571930 cites W1970486977 @default.
- W3048571930 cites W1979544533 @default.
- W3048571930 cites W1985784623 @default.
- W3048571930 cites W1991794210 @default.
- W3048571930 cites W2007395042 @default.
- W3048571930 cites W2017196167 @default.
- W3048571930 cites W2022731012 @default.
- W3048571930 cites W2025444507 @default.
- W3048571930 cites W2029667189 @default.
- W3048571930 cites W2031272029 @default.
- W3048571930 cites W2035250039 @default.
- W3048571930 cites W2047524879 @default.
- W3048571930 cites W2055526416 @default.
- W3048571930 cites W2060079863 @default.
- W3048571930 cites W2061175069 @default.
- W3048571930 cites W2083222334 @default.
- W3048571930 cites W2083415705 @default.
- W3048571930 cites W2092157292 @default.
- W3048571930 cites W2111705896 @default.
- W3048571930 cites W2129478124 @default.
- W3048571930 cites W2155155530 @default.
- W3048571930 cites W2165172960 @default.
- W3048571930 cites W2197007850 @default.
- W3048571930 cites W2282968739 @default.
- W3048571930 cites W2312889428 @default.
- W3048571930 cites W2316524229 @default.
- W3048571930 cites W2470768373 @default.
- W3048571930 cites W2474726859 @default.
- W3048571930 cites W2480381460 @default.
- W3048571930 cites W2524276051 @default.
- W3048571930 cites W2547447472 @default.
- W3048571930 cites W2553555838 @default.
- W3048571930 cites W2558624233 @default.
- W3048571930 cites W2599900050 @default.
- W3048571930 cites W2600764488 @default.
- W3048571930 cites W2606286759 @default.
- W3048571930 cites W26088913 @default.
- W3048571930 cites W2739738501 @default.
- W3048571930 cites W2746244909 @default.
- W3048571930 cites W2755639092 @default.
- W3048571930 cites W2764267192 @default.
- W3048571930 cites W2789681932 @default.
- W3048571930 cites W2883069024 @default.
- W3048571930 cites W2884714198 @default.
- W3048571930 cites W2900475422 @default.
- W3048571930 cites W2904141086 @default.
- W3048571930 cites W2905707612 @default.
- W3048571930 cites W2914218087 @default.
- W3048571930 cites W2939169979 @default.
- W3048571930 cites W3006526089 @default.
- W3048571930 cites W3102680783 @default.
- W3048571930 cites W3105328833 @default.
- W3048571930 cites W3105585217 @default.
- W3048571930 cites W423974 @default.
- W3048571930 doi "https://doi.org/10.1021/acs.jpclett.0c01739" @default.
- W3048571930 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32787306" @default.
- W3048571930 hasPublicationYear "2020" @default.
- W3048571930 type Work @default.
- W3048571930 sameAs 3048571930 @default.
- W3048571930 citedByCount "28" @default.
- W3048571930 countsByYear W30485719302020 @default.
- W3048571930 countsByYear W30485719302021 @default.
- W3048571930 countsByYear W30485719302022 @default.
- W3048571930 countsByYear W30485719302023 @default.
- W3048571930 crossrefType "journal-article" @default.
- W3048571930 hasAuthorship W3048571930A5014192244 @default.
- W3048571930 hasAuthorship W3048571930A5026774143 @default.
- W3048571930 hasAuthorship W3048571930A5077601154 @default.
- W3048571930 hasConcept C126061179 @default.
- W3048571930 hasConcept C147597530 @default.
- W3048571930 hasConcept C159467904 @default.
- W3048571930 hasConcept C171250308 @default.
- W3048571930 hasConcept C178790620 @default.
- W3048571930 hasConcept C185592680 @default.
- W3048571930 hasConcept C192157962 @default.
- W3048571930 hasConcept C192562407 @default.
- W3048571930 hasConcept C2778802280 @default.
- W3048571930 hasConcept C2781442258 @default.
- W3048571930 hasConcept C32909587 @default.
- W3048571930 hasConcept C41625074 @default.
- W3048571930 hasConcept C50670333 @default.
- W3048571930 hasConcept C55493867 @default.
- W3048571930 hasConcept C59593255 @default.
- W3048571930 hasConcept C7070889 @default.
- W3048571930 hasConcept C77851909 @default.
- W3048571930 hasConcept C8010536 @default.
- W3048571930 hasConceptScore W3048571930C126061179 @default.