Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048577892> ?p ?o ?g. }
- W3048577892 endingPage "890" @default.
- W3048577892 startingPage "890" @default.
- W3048577892 abstract "Gaussian process emulators (GPE) are a machine learning approach that replicates computational demanding models using training runs of that model. Constructing such a surrogate is very challenging and, in the context of Bayesian inference, the training runs should be well invested. The current paper offers a fully Bayesian view on GPEs for Bayesian inference accompanied by Bayesian active learning (BAL). We introduce three BAL strategies that adaptively identify training sets for the GPE using information-theoretic arguments. The first strategy relies on Bayesian model evidence that indicates the GPE’s quality of matching the measurement data, the second strategy is based on relative entropy that indicates the relative information gain for the GPE, and the third is founded on information entropy that indicates the missing information in the GPE. We illustrate the performance of our three strategies using analytical- and carbon-dioxide benchmarks. The paper shows evidence of convergence against a reference solution and demonstrates quantification of post-calibration uncertainty by comparing the introduced three strategies. We conclude that Bayesian model evidence-based and relative entropy-based strategies outperform the entropy-based strategy because the latter can be misleading during the BAL. The relative entropy-based strategy demonstrates superior performance to the Bayesian model evidence-based strategy." @default.
- W3048577892 created "2020-08-18" @default.
- W3048577892 creator A5015180726 @default.
- W3048577892 creator A5019257015 @default.
- W3048577892 creator A5080034998 @default.
- W3048577892 creator A5091354130 @default.
- W3048577892 date "2020-08-13" @default.
- W3048577892 modified "2023-10-17" @default.
- W3048577892 title "Bayesian3 Active Learning for the Gaussian Process Emulator Using Information Theory" @default.
- W3048577892 cites W1510225500 @default.
- W3048577892 cites W1598813349 @default.
- W3048577892 cites W1600962523 @default.
- W3048577892 cites W1922851081 @default.
- W3048577892 cites W1965555277 @default.
- W3048577892 cites W1966038674 @default.
- W3048577892 cites W1972020904 @default.
- W3048577892 cites W1973333099 @default.
- W3048577892 cites W1980501707 @default.
- W3048577892 cites W1988639030 @default.
- W3048577892 cites W1990119892 @default.
- W3048577892 cites W1995875735 @default.
- W3048577892 cites W1999091229 @default.
- W3048577892 cites W1999699097 @default.
- W3048577892 cites W2007535697 @default.
- W3048577892 cites W2014018052 @default.
- W3048577892 cites W2015749074 @default.
- W3048577892 cites W2032498155 @default.
- W3048577892 cites W2034373105 @default.
- W3048577892 cites W2037758913 @default.
- W3048577892 cites W2046373151 @default.
- W3048577892 cites W2047459240 @default.
- W3048577892 cites W2049475976 @default.
- W3048577892 cites W2051159254 @default.
- W3048577892 cites W2054095248 @default.
- W3048577892 cites W2055597656 @default.
- W3048577892 cites W2065323491 @default.
- W3048577892 cites W2066944697 @default.
- W3048577892 cites W2069626069 @default.
- W3048577892 cites W2072475940 @default.
- W3048577892 cites W2076580309 @default.
- W3048577892 cites W2113115392 @default.
- W3048577892 cites W2113127808 @default.
- W3048577892 cites W2113337191 @default.
- W3048577892 cites W2124741347 @default.
- W3048577892 cites W2125107816 @default.
- W3048577892 cites W2125275885 @default.
- W3048577892 cites W2168175751 @default.
- W3048577892 cites W2290394775 @default.
- W3048577892 cites W2310941487 @default.
- W3048577892 cites W2321957512 @default.
- W3048577892 cites W2376314300 @default.
- W3048577892 cites W2497530411 @default.
- W3048577892 cites W2520879866 @default.
- W3048577892 cites W2552395941 @default.
- W3048577892 cites W2601412567 @default.
- W3048577892 cites W2602518026 @default.
- W3048577892 cites W2617825774 @default.
- W3048577892 cites W2729225806 @default.
- W3048577892 cites W2736380262 @default.
- W3048577892 cites W2743379961 @default.
- W3048577892 cites W2748654787 @default.
- W3048577892 cites W2789861755 @default.
- W3048577892 cites W2800310459 @default.
- W3048577892 cites W2911148861 @default.
- W3048577892 cites W2911831794 @default.
- W3048577892 cites W2939605413 @default.
- W3048577892 cites W2963377011 @default.
- W3048577892 cites W2964029376 @default.
- W3048577892 cites W2984887861 @default.
- W3048577892 cites W3000877573 @default.
- W3048577892 cites W3015814862 @default.
- W3048577892 cites W3034614062 @default.
- W3048577892 cites W3098719009 @default.
- W3048577892 cites W3099279376 @default.
- W3048577892 cites W3099541808 @default.
- W3048577892 cites W3100515397 @default.
- W3048577892 cites W4211177544 @default.
- W3048577892 doi "https://doi.org/10.3390/e22080890" @default.
- W3048577892 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7517511" @default.
- W3048577892 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33286660" @default.
- W3048577892 hasPublicationYear "2020" @default.
- W3048577892 type Work @default.
- W3048577892 sameAs 3048577892 @default.
- W3048577892 citedByCount "13" @default.
- W3048577892 countsByYear W30485778922020 @default.
- W3048577892 countsByYear W30485778922021 @default.
- W3048577892 countsByYear W30485778922022 @default.
- W3048577892 countsByYear W30485778922023 @default.
- W3048577892 crossrefType "journal-article" @default.
- W3048577892 hasAuthorship W3048577892A5015180726 @default.
- W3048577892 hasAuthorship W3048577892A5019257015 @default.
- W3048577892 hasAuthorship W3048577892A5080034998 @default.
- W3048577892 hasAuthorship W3048577892A5091354130 @default.
- W3048577892 hasBestOaLocation W30485778921 @default.
- W3048577892 hasConcept C106301342 @default.
- W3048577892 hasConcept C107673813 @default.
- W3048577892 hasConcept C119857082 @default.
- W3048577892 hasConcept C121332964 @default.