Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048578505> ?p ?o ?g. }
- W3048578505 endingPage "4772" @default.
- W3048578505 startingPage "4757" @default.
- W3048578505 abstract "Time-frequency analysis (TFA) plays an important role in various engineering and biomedical fields. For a non-stationary time series, a common practice is to divide data into segments under the piecewise stationarity assumption and perform TFA for each segment. In this article, we propose a three-layer latent variable model that relaxes such an assumption and therefore provides a more flexible solution to identify the frequency components and characterize their evolution over time for non-stationary time series with multi-component signals. Our proposed model is built upon hierarchical Dirichlet process (HDP), hidden Markov model (HMM) and extended time-varying autoregressive (ETVAR) model. The proposed approach does not impose any restrictions on the number and locations of segments, or the number and values of the frequency components within a segment. Both the simulation studies and real data applications demonstrate the superiority of the proposed method over existing methods." @default.
- W3048578505 created "2020-08-18" @default.
- W3048578505 creator A5010663495 @default.
- W3048578505 creator A5063046834 @default.
- W3048578505 date "2020-01-01" @default.
- W3048578505 modified "2023-10-06" @default.
- W3048578505 title "A Statistical Time-Frequency Model for Non-stationary Time Series Analysis" @default.
- W3048578505 cites W136351913 @default.
- W3048578505 cites W1800104164 @default.
- W3048578505 cites W1925346143 @default.
- W3048578505 cites W1969873562 @default.
- W3048578505 cites W1990139510 @default.
- W3048578505 cites W1992534575 @default.
- W3048578505 cites W1998244228 @default.
- W3048578505 cites W1999076778 @default.
- W3048578505 cites W2004235096 @default.
- W3048578505 cites W2007221293 @default.
- W3048578505 cites W2008766287 @default.
- W3048578505 cites W2009260184 @default.
- W3048578505 cites W2010313430 @default.
- W3048578505 cites W2010556676 @default.
- W3048578505 cites W2020997493 @default.
- W3048578505 cites W2024432544 @default.
- W3048578505 cites W2028497691 @default.
- W3048578505 cites W2045751586 @default.
- W3048578505 cites W2056306993 @default.
- W3048578505 cites W2058488752 @default.
- W3048578505 cites W2072254976 @default.
- W3048578505 cites W2090218979 @default.
- W3048578505 cites W2097532725 @default.
- W3048578505 cites W2102372511 @default.
- W3048578505 cites W2102650396 @default.
- W3048578505 cites W2102862543 @default.
- W3048578505 cites W2104791085 @default.
- W3048578505 cites W2105594594 @default.
- W3048578505 cites W2109957730 @default.
- W3048578505 cites W2110661716 @default.
- W3048578505 cites W2120390927 @default.
- W3048578505 cites W2126401336 @default.
- W3048578505 cites W2127830077 @default.
- W3048578505 cites W2132085292 @default.
- W3048578505 cites W2132568243 @default.
- W3048578505 cites W2134870415 @default.
- W3048578505 cites W2135537007 @default.
- W3048578505 cites W2140676414 @default.
- W3048578505 cites W2140949164 @default.
- W3048578505 cites W2141461755 @default.
- W3048578505 cites W2144635878 @default.
- W3048578505 cites W2145487065 @default.
- W3048578505 cites W2145592239 @default.
- W3048578505 cites W2148534890 @default.
- W3048578505 cites W2149284055 @default.
- W3048578505 cites W2152824262 @default.
- W3048578505 cites W2158266063 @default.
- W3048578505 cites W2159127920 @default.
- W3048578505 cites W2160035290 @default.
- W3048578505 cites W2165878107 @default.
- W3048578505 cites W2168457617 @default.
- W3048578505 cites W2169895393 @default.
- W3048578505 cites W2170202858 @default.
- W3048578505 cites W2171801645 @default.
- W3048578505 cites W2340612440 @default.
- W3048578505 cites W2343315732 @default.
- W3048578505 cites W2390237441 @default.
- W3048578505 cites W2517980772 @default.
- W3048578505 cites W2524746846 @default.
- W3048578505 cites W2599893746 @default.
- W3048578505 cites W2612983860 @default.
- W3048578505 cites W2618167481 @default.
- W3048578505 cites W2626315120 @default.
- W3048578505 cites W2734777338 @default.
- W3048578505 cites W2756061655 @default.
- W3048578505 cites W2759006806 @default.
- W3048578505 cites W2767789530 @default.
- W3048578505 cites W2777172762 @default.
- W3048578505 cites W2785189499 @default.
- W3048578505 cites W2790682483 @default.
- W3048578505 cites W2889114526 @default.
- W3048578505 cites W2895863452 @default.
- W3048578505 cites W3100139952 @default.
- W3048578505 cites W3102101328 @default.
- W3048578505 cites W3104490327 @default.
- W3048578505 cites W3123403928 @default.
- W3048578505 cites W3125740183 @default.
- W3048578505 cites W4205130185 @default.
- W3048578505 cites W4240810135 @default.
- W3048578505 cites W582533044 @default.
- W3048578505 doi "https://doi.org/10.1109/tsp.2020.3014607" @default.
- W3048578505 hasPublicationYear "2020" @default.
- W3048578505 type Work @default.
- W3048578505 sameAs 3048578505 @default.
- W3048578505 citedByCount "5" @default.
- W3048578505 countsByYear W30485785052021 @default.
- W3048578505 countsByYear W30485785052022 @default.
- W3048578505 countsByYear W30485785052023 @default.
- W3048578505 crossrefType "journal-article" @default.
- W3048578505 hasAuthorship W3048578505A5010663495 @default.
- W3048578505 hasAuthorship W3048578505A5063046834 @default.