Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048581266> ?p ?o ?g. }
- W3048581266 endingPage "148676" @default.
- W3048581266 startingPage "148644" @default.
- W3048581266 abstract "Breast cancer is a type of cancer that has risen to be the second cause of death among women. Classification of breast tissues into normal, benign, or malignant depends on the presence of abnormalities like microcalcifications, masses, architectural distortions, and asymmetries. Architectural distortion (AD) is subtle in detection with no association with masses but shows the abnormal arrangement of tissue strands, often in a radial, spiculation, or random pattern. It is widely rated as the third symptom of breast cancer which is the most commonly missed abnormality. Most computational approaches characterizing abnormalities in breast images often concentrate on the detection of microcalcification and masses with architectural distortions appearing as a secondary finding. The subtle nature and a minimal occurrence of architectural distortions may seem to complicate computational approaches for its detection. As a result, little research interest has been recorded in this area. It is widely reported that some cases of recent breast cancer are wrongly diagnosed due to the omission in detecting the presence of architectural distortion at the early stage of the disease. However, we discovered that most computational solutions to early detection of breast cancer are focused mainly on detecting other abnormalities such as masses and microcalcification, which are some evidence of the advanced stage of the disease. To emphasise the little efforts channeled towards detection of AD compared to other abnormalities, this article aims to detail the review of such studies in the last decade. To the best of our knowledge, this study presents the first review which focuses on the detection of architectural distortion (AD) from mammographic images. Furthermore, this article presents a comprehensive review of approaches, advances, and challenges on the computational methods for detecting AD, with the sole aim of advancing the use of deep learning models in detecting AD. Moreover, a comparative study of performance analyses of articles surveyed in this article is investigated. Our findings revealed that about 70% of the existing literature adopted Gabor Filters, while just less than 10% leveraged on the state-of-the-art performances recorded in computer vision and deep learning, in building outstanding computational models for the detection of AD. The current study also discovered that using a deep learning approach, such as the convolution neural network (CNN) method, can yield a significant increase in performance for the task of detection of architectural distortions. This assertion is based on literature results obtained using the CNN, which generates an accuracy of 99.4% compared to the use of Gabor filters method, which accounts for 95% accuracy." @default.
- W3048581266 created "2020-08-18" @default.
- W3048581266 creator A5039005612 @default.
- W3048581266 creator A5060873940 @default.
- W3048581266 date "2020-01-01" @default.
- W3048581266 modified "2023-10-05" @default.
- W3048581266 title "A State-of-the-Art Survey on Deep Learning Methods for Detection of Architectural Distortion From Digital Mammography" @default.
- W3048581266 cites W1514413577 @default.
- W3048581266 cites W1582571398 @default.
- W3048581266 cites W1935114450 @default.
- W3048581266 cites W1981989535 @default.
- W3048581266 cites W1991357295 @default.
- W3048581266 cites W1993233243 @default.
- W3048581266 cites W1995399973 @default.
- W3048581266 cites W2006910638 @default.
- W3048581266 cites W2014458814 @default.
- W3048581266 cites W2024569129 @default.
- W3048581266 cites W2028532540 @default.
- W3048581266 cites W2034676958 @default.
- W3048581266 cites W2035516141 @default.
- W3048581266 cites W2040758380 @default.
- W3048581266 cites W2046720034 @default.
- W3048581266 cites W2060226124 @default.
- W3048581266 cites W2061160488 @default.
- W3048581266 cites W2062471702 @default.
- W3048581266 cites W2065526109 @default.
- W3048581266 cites W2070443648 @default.
- W3048581266 cites W2076069245 @default.
- W3048581266 cites W2080757614 @default.
- W3048581266 cites W2085186420 @default.
- W3048581266 cites W2087550369 @default.
- W3048581266 cites W2091191926 @default.
- W3048581266 cites W2097117768 @default.
- W3048581266 cites W2101771332 @default.
- W3048581266 cites W2107865309 @default.
- W3048581266 cites W2112796928 @default.
- W3048581266 cites W2133749843 @default.
- W3048581266 cites W2138857412 @default.
- W3048581266 cites W2150644275 @default.
- W3048581266 cites W2153611569 @default.
- W3048581266 cites W2157438138 @default.
- W3048581266 cites W2161791887 @default.
- W3048581266 cites W2163677287 @default.
- W3048581266 cites W2165731505 @default.
- W3048581266 cites W2166441074 @default.
- W3048581266 cites W2169512939 @default.
- W3048581266 cites W2181901042 @default.
- W3048581266 cites W2183341477 @default.
- W3048581266 cites W2194775991 @default.
- W3048581266 cites W2253429366 @default.
- W3048581266 cites W2275053611 @default.
- W3048581266 cites W2293509196 @default.
- W3048581266 cites W2294322783 @default.
- W3048581266 cites W2294815452 @default.
- W3048581266 cites W2295256730 @default.
- W3048581266 cites W2299565249 @default.
- W3048581266 cites W2323442375 @default.
- W3048581266 cites W2334355223 @default.
- W3048581266 cites W2484376146 @default.
- W3048581266 cites W2531409750 @default.
- W3048581266 cites W2533636471 @default.
- W3048581266 cites W2538869118 @default.
- W3048581266 cites W2540115786 @default.
- W3048581266 cites W2541368816 @default.
- W3048581266 cites W2549006548 @default.
- W3048581266 cites W2549139847 @default.
- W3048581266 cites W2573215997 @default.
- W3048581266 cites W2583337654 @default.
- W3048581266 cites W2588464650 @default.
- W3048581266 cites W2588900926 @default.
- W3048581266 cites W2606915180 @default.
- W3048581266 cites W2621462870 @default.
- W3048581266 cites W2634517207 @default.
- W3048581266 cites W2725008604 @default.
- W3048581266 cites W2731422065 @default.
- W3048581266 cites W2751425691 @default.
- W3048581266 cites W2754404252 @default.
- W3048581266 cites W2755773539 @default.
- W3048581266 cites W2755930428 @default.
- W3048581266 cites W2766123424 @default.
- W3048581266 cites W2766428274 @default.
- W3048581266 cites W2767016695 @default.
- W3048581266 cites W2767696612 @default.
- W3048581266 cites W2779396040 @default.
- W3048581266 cites W2789584652 @default.
- W3048581266 cites W2789923448 @default.
- W3048581266 cites W2790881252 @default.
- W3048581266 cites W2791525189 @default.
- W3048581266 cites W2793956967 @default.
- W3048581266 cites W2794714001 @default.
- W3048581266 cites W2801671081 @default.
- W3048581266 cites W2808098508 @default.
- W3048581266 cites W2809254203 @default.
- W3048581266 cites W2883595631 @default.
- W3048581266 cites W2885287159 @default.
- W3048581266 cites W2886464381 @default.
- W3048581266 cites W2891566869 @default.
- W3048581266 cites W2900666566 @default.