Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048588687> ?p ?o ?g. }
- W3048588687 abstract "The goal of this proposal is to design a neurobiologically-based model that describes the switching mechanism in category learning based on existing category learning theory and model. COVIS is a neurobiologically-detailed theory of multiple systems in category learning. COVIS postulates two systems that compete throughout learning—a frontal-based declarative hypothesis-testing system that uses logical reasoning and depends on working memory and executive attention, and a basal ganglia-mediated system that uses procedural learning. However, no biological mechanism has been proposed to account for the interaction between the COVIS systems. We propose a model that employs a neurobiological-based circuit that describes the interaction and switching between the hypothesis-testing system and the procedural learning systems in COVIS. With the hypothesis-testing system and procedural learning system modeled as black boxes, the model focuses on the network that facilitates switching. In COVIS, both learning systems generate a response signal in each trial based on the stimuli given. Our model incorporates the Izhikevich firing model that represents the activity of the neuronal cells from the hyperdirect pathway of the cortico-basal ganglia network. The hyperdirect pathway acts as a gate for the response signal of the procedural learning system to reach the premotor units for action selection. We propose that the procedural learning system’s response is inhibited from approaching the premotor units when the hypothesis-testing system is in control of the response. However, if rule-based strategies fail, inhibition to the procedural system’s response is reduced. The reduction in inhibition results in the acceptance of responses from both learning systems in the premotor units. To validate the proposed model, we fit the model to two groups of participants in a perceptual category-learning task. One group of participants used the optimal procedural strategy in the task and the other used a suboptimal rule-based strategy. The categorization task was an information-integration task, whereby participants had to switch away from rule-based strategies and learn to integrate the stimulus dimensions to be able to perform optimally. We were able to differentiate the switchers from the non-switchers by adjusting the parameters in the model. In addition, we fitted another task to the model in which participants from different age groups with or without Parkinson’s disease were asked to switch between rule-based and procedural strategies on a trial-by-trial basis. We were able to match the learning curve, accuracy switch cost, and proportion of switchers of the different groups of participants." @default.
- W3048588687 created "2020-08-18" @default.
- W3048588687 creator A5021826347 @default.
- W3048588687 date "2020-08-12" @default.
- W3048588687 modified "2023-09-27" @default.
- W3048588687 title "A computational model of the interaction of neurobiological circuits for category learning" @default.
- W3048588687 cites W125252782 @default.
- W3048588687 cites W1485378195 @default.
- W3048588687 cites W1508276986 @default.
- W3048588687 cites W1593495836 @default.
- W3048588687 cites W160989634 @default.
- W3048588687 cites W1652173018 @default.
- W3048588687 cites W1785139398 @default.
- W3048588687 cites W1795327044 @default.
- W3048588687 cites W1893771759 @default.
- W3048588687 cites W191608625 @default.
- W3048588687 cites W1976284302 @default.
- W3048588687 cites W1982827121 @default.
- W3048588687 cites W1985940938 @default.
- W3048588687 cites W2005269174 @default.
- W3048588687 cites W2013369031 @default.
- W3048588687 cites W2018989851 @default.
- W3048588687 cites W2020210023 @default.
- W3048588687 cites W2028655427 @default.
- W3048588687 cites W2028927915 @default.
- W3048588687 cites W2037740307 @default.
- W3048588687 cites W2051137788 @default.
- W3048588687 cites W2054520155 @default.
- W3048588687 cites W2056988711 @default.
- W3048588687 cites W2062720396 @default.
- W3048588687 cites W2062990177 @default.
- W3048588687 cites W2070149136 @default.
- W3048588687 cites W2072413244 @default.
- W3048588687 cites W2075021671 @default.
- W3048588687 cites W2077817595 @default.
- W3048588687 cites W2082636843 @default.
- W3048588687 cites W2083473390 @default.
- W3048588687 cites W2096682312 @default.
- W3048588687 cites W2101323665 @default.
- W3048588687 cites W2104069532 @default.
- W3048588687 cites W2104633323 @default.
- W3048588687 cites W2110966189 @default.
- W3048588687 cites W2113167392 @default.
- W3048588687 cites W2114277688 @default.
- W3048588687 cites W2114863659 @default.
- W3048588687 cites W2117394871 @default.
- W3048588687 cites W2117726420 @default.
- W3048588687 cites W2119443761 @default.
- W3048588687 cites W2124190705 @default.
- W3048588687 cites W2126236933 @default.
- W3048588687 cites W2129478155 @default.
- W3048588687 cites W2129545296 @default.
- W3048588687 cites W2132743361 @default.
- W3048588687 cites W2138951864 @default.
- W3048588687 cites W2140983215 @default.
- W3048588687 cites W2145264532 @default.
- W3048588687 cites W2149525340 @default.
- W3048588687 cites W2151547605 @default.
- W3048588687 cites W2152893107 @default.
- W3048588687 cites W2158437989 @default.
- W3048588687 cites W2159162180 @default.
- W3048588687 cites W2161328900 @default.
- W3048588687 cites W2162970257 @default.
- W3048588687 cites W2165031188 @default.
- W3048588687 cites W2170919319 @default.
- W3048588687 cites W2328130814 @default.
- W3048588687 cites W2490340032 @default.
- W3048588687 cites W2559207659 @default.
- W3048588687 cites W2593052102 @default.
- W3048588687 cites W2600384540 @default.
- W3048588687 cites W2612528709 @default.
- W3048588687 cites W2752099845 @default.
- W3048588687 cites W2767460076 @default.
- W3048588687 cites W2768076475 @default.
- W3048588687 cites W2770232274 @default.
- W3048588687 cites W2783497009 @default.
- W3048588687 cites W2800142021 @default.
- W3048588687 cites W2810527092 @default.
- W3048588687 cites W2887972576 @default.
- W3048588687 cites W2919912236 @default.
- W3048588687 cites W2952504784 @default.
- W3048588687 cites W3003482291 @default.
- W3048588687 cites W2553871239 @default.
- W3048588687 doi "https://doi.org/10.25394/pgs.12790259.v1" @default.
- W3048588687 hasPublicationYear "2020" @default.
- W3048588687 type Work @default.
- W3048588687 sameAs 3048588687 @default.
- W3048588687 citedByCount "0" @default.
- W3048588687 crossrefType "dissertation" @default.
- W3048588687 hasAuthorship W3048588687A5021826347 @default.
- W3048588687 hasConcept C111472728 @default.
- W3048588687 hasConcept C111919701 @default.
- W3048588687 hasConcept C119857082 @default.
- W3048588687 hasConcept C138885662 @default.
- W3048588687 hasConcept C154945302 @default.
- W3048588687 hasConcept C15744967 @default.
- W3048588687 hasConcept C164749973 @default.
- W3048588687 hasConcept C166109690 @default.
- W3048588687 hasConcept C169760540 @default.
- W3048588687 hasConcept C169900460 @default.