Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048589601> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3048589601 abstract "[This Proceedings paper was revised and published in the 2019 issue of the journal Informing Science: The International Journal of an Emerging Transdiscipline, Volume 22] Aim/Purpose: The aim of this paper is to propose an ensemble learners based classification model for classification clickbaits from genuine article headlines. Background: Clickbaits are online articles with deliberately designed misleading titles for luring more and more readers to open the intended web page. Clickbaits are used to tempted visitors to click on a particular link either to monetize the landing page or to spread the false news for sensationalization. The presence of clickbaits on any news aggregator portal may lead to an unpleasant experience for readers. Therefore, it is essential to distinguish clickbaits from authentic headlines to mitigate their impact on readers’ perception. Methodology: A total of one hundred thousand article headlines are collected from news aggregator sites consists of clickbaits and authentic news headlines. The collected data samples are divided into five training sets of balanced and unbalanced data. The natural language processing techniques are used to extract 19 manually selected features from article headlines. Contribution: Three ensemble learning techniques including bagging, boosting, and random forests are used to design a classifier model for classifying a given headline into the clickbait or non-clickbait. The performances of learners are evaluated using accuracy, precision, recall, and F-measures. Findings: It is observed that the random forest classifier detects clickbaits better than the other classifiers with an accuracy of 91.16 %, a total precision, recall, and f-measure of 91 %." @default.
- W3048589601 created "2020-08-18" @default.
- W3048589601 creator A5013636671 @default.
- W3048589601 date "2019-01-01" @default.
- W3048589601 modified "2023-09-23" @default.
- W3048589601 title "Ensemble Learning Approach for Clickbait Detection Using Article Headline Features" @default.
- W3048589601 doi "https://doi.org/10.28945/4319" @default.
- W3048589601 hasPublicationYear "2019" @default.
- W3048589601 type Work @default.
- W3048589601 sameAs 3048589601 @default.
- W3048589601 citedByCount "1" @default.
- W3048589601 countsByYear W30485896012020 @default.
- W3048589601 crossrefType "proceedings-article" @default.
- W3048589601 hasAuthorship W3048589601A5013636671 @default.
- W3048589601 hasBestOaLocation W30485896011 @default.
- W3048589601 hasConcept C100660578 @default.
- W3048589601 hasConcept C112698675 @default.
- W3048589601 hasConcept C119857082 @default.
- W3048589601 hasConcept C136764020 @default.
- W3048589601 hasConcept C138885662 @default.
- W3048589601 hasConcept C144133560 @default.
- W3048589601 hasConcept C154945302 @default.
- W3048589601 hasConcept C169258074 @default.
- W3048589601 hasConcept C180505990 @default.
- W3048589601 hasConcept C204321447 @default.
- W3048589601 hasConcept C23123220 @default.
- W3048589601 hasConcept C2778689934 @default.
- W3048589601 hasConcept C41008148 @default.
- W3048589601 hasConcept C41895202 @default.
- W3048589601 hasConcept C45942800 @default.
- W3048589601 hasConcept C46686674 @default.
- W3048589601 hasConcept C81669768 @default.
- W3048589601 hasConcept C95623464 @default.
- W3048589601 hasConceptScore W3048589601C100660578 @default.
- W3048589601 hasConceptScore W3048589601C112698675 @default.
- W3048589601 hasConceptScore W3048589601C119857082 @default.
- W3048589601 hasConceptScore W3048589601C136764020 @default.
- W3048589601 hasConceptScore W3048589601C138885662 @default.
- W3048589601 hasConceptScore W3048589601C144133560 @default.
- W3048589601 hasConceptScore W3048589601C154945302 @default.
- W3048589601 hasConceptScore W3048589601C169258074 @default.
- W3048589601 hasConceptScore W3048589601C180505990 @default.
- W3048589601 hasConceptScore W3048589601C204321447 @default.
- W3048589601 hasConceptScore W3048589601C23123220 @default.
- W3048589601 hasConceptScore W3048589601C2778689934 @default.
- W3048589601 hasConceptScore W3048589601C41008148 @default.
- W3048589601 hasConceptScore W3048589601C41895202 @default.
- W3048589601 hasConceptScore W3048589601C45942800 @default.
- W3048589601 hasConceptScore W3048589601C46686674 @default.
- W3048589601 hasConceptScore W3048589601C81669768 @default.
- W3048589601 hasConceptScore W3048589601C95623464 @default.
- W3048589601 hasLocation W30485896011 @default.
- W3048589601 hasOpenAccess W3048589601 @default.
- W3048589601 hasPrimaryLocation W30485896011 @default.
- W3048589601 hasRelatedWork W128540768 @default.
- W3048589601 hasRelatedWork W1597240684 @default.
- W3048589601 hasRelatedWork W1999987298 @default.
- W3048589601 hasRelatedWork W2240696940 @default.
- W3048589601 hasRelatedWork W23147813 @default.
- W3048589601 hasRelatedWork W2361145787 @default.
- W3048589601 hasRelatedWork W2369036984 @default.
- W3048589601 hasRelatedWork W2397843708 @default.
- W3048589601 hasRelatedWork W2587546791 @default.
- W3048589601 hasRelatedWork W2596296339 @default.
- W3048589601 hasRelatedWork W2615675996 @default.
- W3048589601 hasRelatedWork W2739911184 @default.
- W3048589601 hasRelatedWork W2789638151 @default.
- W3048589601 hasRelatedWork W2806036549 @default.
- W3048589601 hasRelatedWork W3023338722 @default.
- W3048589601 hasRelatedWork W3027034684 @default.
- W3048589601 hasRelatedWork W3080816325 @default.
- W3048589601 hasRelatedWork W3147773549 @default.
- W3048589601 hasRelatedWork W3169201280 @default.
- W3048589601 hasRelatedWork W3187979313 @default.
- W3048589601 isParatext "false" @default.
- W3048589601 isRetracted "false" @default.
- W3048589601 magId "3048589601" @default.
- W3048589601 workType "article" @default.