Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048592407> ?p ?o ?g. }
- W3048592407 endingPage "2576" @default.
- W3048592407 startingPage "2576" @default.
- W3048592407 abstract "Fire is one of the primary sources of damages to natural environments globally. Estimates show that approximately 4 million km2 of land burns yearly. Studies have shown that such estimates often underestimate the real extent of burnt land, which highlights the need to find better, state-of-the-art methods to detect and classify these areas. This study aimed to analyze the use of deep convolutional Autoencoders in the classification of burnt areas, considering different sample patch sizes. A simple Autoencoder and the U-Net and ResUnet architectures were evaluated. We collected Landsat 8 OLI+ data from three scenes in four consecutive dates to detect the changes specifically in the form of burnt land. The data were sampled according to four different sampling strategies to evaluate possible performance changes related to sampling window sizes. The training stage used two scenes, while the validation stage used the remaining scene. The ground truth change mask was created using the Normalized Burn Ratio (NBR) spectral index through a thresholding approach. The classifications were evaluated according to the F1 index, Kappa index, and mean Intersection over Union (mIoU) value. Results have shown that the U-Net and ResUnet architectures offered the best classifications with average F1, Kappa, and mIoU values of approximately 0.96, representing excellent classification results. We have also verified that a sampling window size of 256 by 256 pixels offered the best results." @default.
- W3048592407 created "2020-08-18" @default.
- W3048592407 creator A5008925624 @default.
- W3048592407 creator A5022607605 @default.
- W3048592407 creator A5056966645 @default.
- W3048592407 creator A5057329014 @default.
- W3048592407 creator A5083036615 @default.
- W3048592407 date "2020-08-11" @default.
- W3048592407 modified "2023-10-16" @default.
- W3048592407 title "Performance Analysis of Deep Convolutional Autoencoders with Different Patch Sizes for Change Detection from Burnt Areas" @default.
- W3048592407 cites W1502923721 @default.
- W3048592407 cites W1964101565 @default.
- W3048592407 cites W1983364832 @default.
- W3048592407 cites W1998709941 @default.
- W3048592407 cites W2043928145 @default.
- W3048592407 cites W2084413241 @default.
- W3048592407 cites W2086014296 @default.
- W3048592407 cites W2088950943 @default.
- W3048592407 cites W2103219856 @default.
- W3048592407 cites W2114828048 @default.
- W3048592407 cites W2144230836 @default.
- W3048592407 cites W2162348455 @default.
- W3048592407 cites W2165868425 @default.
- W3048592407 cites W2168481151 @default.
- W3048592407 cites W2221448138 @default.
- W3048592407 cites W2253590344 @default.
- W3048592407 cites W2295862745 @default.
- W3048592407 cites W2412588858 @default.
- W3048592407 cites W2501371584 @default.
- W3048592407 cites W2565950292 @default.
- W3048592407 cites W2602033978 @default.
- W3048592407 cites W2603731349 @default.
- W3048592407 cites W2604086375 @default.
- W3048592407 cites W2605995529 @default.
- W3048592407 cites W2729813113 @default.
- W3048592407 cites W2734353617 @default.
- W3048592407 cites W2748715875 @default.
- W3048592407 cites W2769774644 @default.
- W3048592407 cites W2770853283 @default.
- W3048592407 cites W2772359634 @default.
- W3048592407 cites W2774320778 @default.
- W3048592407 cites W2782522152 @default.
- W3048592407 cites W2782817750 @default.
- W3048592407 cites W2782970864 @default.
- W3048592407 cites W2788055254 @default.
- W3048592407 cites W2789469790 @default.
- W3048592407 cites W2804113564 @default.
- W3048592407 cites W2884821113 @default.
- W3048592407 cites W2894340056 @default.
- W3048592407 cites W2895556392 @default.
- W3048592407 cites W2901991650 @default.
- W3048592407 cites W2902807116 @default.
- W3048592407 cites W2907663452 @default.
- W3048592407 cites W2920767026 @default.
- W3048592407 cites W2963183385 @default.
- W3048592407 cites W2964169840 @default.
- W3048592407 cites W2966450079 @default.
- W3048592407 cites W2974382310 @default.
- W3048592407 cites W2977285729 @default.
- W3048592407 cites W2999715894 @default.
- W3048592407 cites W3000305214 @default.
- W3048592407 cites W3002387699 @default.
- W3048592407 cites W3003452346 @default.
- W3048592407 cites W3008200123 @default.
- W3048592407 cites W3010257550 @default.
- W3048592407 cites W3011156941 @default.
- W3048592407 cites W3014120959 @default.
- W3048592407 cites W3021970402 @default.
- W3048592407 cites W3038733909 @default.
- W3048592407 cites W3098542449 @default.
- W3048592407 cites W4235316846 @default.
- W3048592407 cites W4248710273 @default.
- W3048592407 doi "https://doi.org/10.3390/rs12162576" @default.
- W3048592407 hasPublicationYear "2020" @default.
- W3048592407 type Work @default.
- W3048592407 sameAs 3048592407 @default.
- W3048592407 citedByCount "20" @default.
- W3048592407 countsByYear W30485924072020 @default.
- W3048592407 countsByYear W30485924072021 @default.
- W3048592407 countsByYear W30485924072022 @default.
- W3048592407 countsByYear W30485924072023 @default.
- W3048592407 crossrefType "journal-article" @default.
- W3048592407 hasAuthorship W3048592407A5008925624 @default.
- W3048592407 hasAuthorship W3048592407A5022607605 @default.
- W3048592407 hasAuthorship W3048592407A5056966645 @default.
- W3048592407 hasAuthorship W3048592407A5057329014 @default.
- W3048592407 hasAuthorship W3048592407A5083036615 @default.
- W3048592407 hasBestOaLocation W30485924071 @default.
- W3048592407 hasConcept C106131492 @default.
- W3048592407 hasConcept C115961682 @default.
- W3048592407 hasConcept C119857082 @default.
- W3048592407 hasConcept C140779682 @default.
- W3048592407 hasConcept C146849305 @default.
- W3048592407 hasConcept C153180895 @default.
- W3048592407 hasConcept C154945302 @default.
- W3048592407 hasConcept C163864269 @default.
- W3048592407 hasConcept C191178318 @default.
- W3048592407 hasConcept C205649164 @default.