Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048623948> ?p ?o ?g. }
- W3048623948 endingPage "515" @default.
- W3048623948 startingPage "505" @default.
- W3048623948 abstract "Abstract Over the last decade, a rapid rise in deaths due to liver disease has been observed especially amongst young people. Nowadays liver disease accounts for approximately 2 million deaths per year worldwide: 1 million due to complications of cirrhosis and 1 million due to viral hepatitis and hepatocellular carcinoma. Besides primary liver malignancies, almost all solid tumours are capable to spread metastases to the liver, in particular, gastrointestinal cancers, breast and genitourinary cancers, lung cancer, melanomas and sarcomas. A big portion of liver malignancies undergo palliative care. To this end, the paradigm of the palliative care in the liver cancer management is evolving from “just end of the life” care to careful evaluation of all aspects relevant for the survivorship. In the presented study, an evidence-based approach has been taken to target molecular pathways and subcellular components for modelling most optimal conditions with the longest survival rates for patients diagnosed with advanced liver malignancies who underwent palliative treatments. We developed an unsupervised machine learning (UML) approach to robustly identify patient subgroups based on estimated survival curves for each individual patient and each individual potential biomarker. UML using consensus hierarchical clustering of biomarker derived risk profiles resulted into 3 stable patient subgroups. There were no significant differences in age, gender, therapy, diagnosis or comorbidities across clusters. Survival times across clusters differed significantly. Furthermore, several of the biomarkers demonstrated highly significant pairwise differences between clusters after correction for multiple testing, namely, “comet assay” patterns of classes I, III, IV and expression rates of calgranulin A (S100), SOD2 and profilin—all measured ex vivo in circulating leucocytes. Considering worst, intermediate and best survival curves with regard to identified clusters and corresponding patterns of parameters measured, clear differences were found for “comet assay” and S100 expression patterns. In conclusion, multi-faceted cancer control within the palliative care of liver malignancies is crucial for improved disease outcomes including individualised patient profiling, predictive models and implementation of corresponding cost-effective risks mitigating measures detailed in the paper. The “proof-of-principle” model is presented." @default.
- W3048623948 created "2020-08-18" @default.
- W3048623948 creator A5005095447 @default.
- W3048623948 creator A5010633102 @default.
- W3048623948 creator A5013955860 @default.
- W3048623948 creator A5054001409 @default.
- W3048623948 creator A5068066539 @default.
- W3048623948 creator A5077001189 @default.
- W3048623948 date "2020-08-10" @default.
- W3048623948 modified "2023-10-16" @default.
- W3048623948 title "Optimal multiparametric set-up modelled for best survival outcomes in palliative treatment of liver malignancies: unsupervised machine learning and 3 PM recommendations" @default.
- W3048623948 cites W1548779692 @default.
- W3048623948 cites W2104782261 @default.
- W3048623948 cites W2507299864 @default.
- W3048623948 cites W2532686299 @default.
- W3048623948 cites W2548152608 @default.
- W3048623948 cites W2610428013 @default.
- W3048623948 cites W2775795219 @default.
- W3048623948 cites W2782959532 @default.
- W3048623948 cites W2791920968 @default.
- W3048623948 cites W2792425071 @default.
- W3048623948 cites W2797080809 @default.
- W3048623948 cites W2885512683 @default.
- W3048623948 cites W2893835498 @default.
- W3048623948 cites W2910195437 @default.
- W3048623948 cites W2938702990 @default.
- W3048623948 cites W2991132902 @default.
- W3048623948 cites W2991324902 @default.
- W3048623948 cites W3010637630 @default.
- W3048623948 cites W3010957497 @default.
- W3048623948 cites W3011516015 @default.
- W3048623948 cites W3013727805 @default.
- W3048623948 cites W3014918660 @default.
- W3048623948 cites W3017019970 @default.
- W3048623948 cites W3027773206 @default.
- W3048623948 cites W3027992207 @default.
- W3048623948 cites W3032044337 @default.
- W3048623948 cites W3037513933 @default.
- W3048623948 cites W4230616157 @default.
- W3048623948 doi "https://doi.org/10.1007/s13167-020-00221-2" @default.
- W3048623948 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7416811" @default.
- W3048623948 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32839667" @default.
- W3048623948 hasPublicationYear "2020" @default.
- W3048623948 type Work @default.
- W3048623948 sameAs 3048623948 @default.
- W3048623948 citedByCount "25" @default.
- W3048623948 countsByYear W30486239482020 @default.
- W3048623948 countsByYear W30486239482021 @default.
- W3048623948 countsByYear W30486239482022 @default.
- W3048623948 countsByYear W30486239482023 @default.
- W3048623948 crossrefType "journal-article" @default.
- W3048623948 hasAuthorship W3048623948A5005095447 @default.
- W3048623948 hasAuthorship W3048623948A5010633102 @default.
- W3048623948 hasAuthorship W3048623948A5013955860 @default.
- W3048623948 hasAuthorship W3048623948A5054001409 @default.
- W3048623948 hasAuthorship W3048623948A5068066539 @default.
- W3048623948 hasAuthorship W3048623948A5077001189 @default.
- W3048623948 hasBestOaLocation W30486239481 @default.
- W3048623948 hasConcept C121608353 @default.
- W3048623948 hasConcept C126322002 @default.
- W3048623948 hasConcept C143998085 @default.
- W3048623948 hasConcept C159110408 @default.
- W3048623948 hasConcept C185592680 @default.
- W3048623948 hasConcept C2776231280 @default.
- W3048623948 hasConcept C2777075537 @default.
- W3048623948 hasConcept C2777214474 @default.
- W3048623948 hasConcept C2778019345 @default.
- W3048623948 hasConcept C2781197716 @default.
- W3048623948 hasConcept C2994186709 @default.
- W3048623948 hasConcept C55493867 @default.
- W3048623948 hasConcept C71924100 @default.
- W3048623948 hasConceptScore W3048623948C121608353 @default.
- W3048623948 hasConceptScore W3048623948C126322002 @default.
- W3048623948 hasConceptScore W3048623948C143998085 @default.
- W3048623948 hasConceptScore W3048623948C159110408 @default.
- W3048623948 hasConceptScore W3048623948C185592680 @default.
- W3048623948 hasConceptScore W3048623948C2776231280 @default.
- W3048623948 hasConceptScore W3048623948C2777075537 @default.
- W3048623948 hasConceptScore W3048623948C2777214474 @default.
- W3048623948 hasConceptScore W3048623948C2778019345 @default.
- W3048623948 hasConceptScore W3048623948C2781197716 @default.
- W3048623948 hasConceptScore W3048623948C2994186709 @default.
- W3048623948 hasConceptScore W3048623948C55493867 @default.
- W3048623948 hasConceptScore W3048623948C71924100 @default.
- W3048623948 hasFunder F4320324900 @default.
- W3048623948 hasIssue "3" @default.
- W3048623948 hasLocation W30486239481 @default.
- W3048623948 hasLocation W30486239482 @default.
- W3048623948 hasLocation W30486239483 @default.
- W3048623948 hasOpenAccess W3048623948 @default.
- W3048623948 hasPrimaryLocation W30486239481 @default.
- W3048623948 hasRelatedWork W2019122625 @default.
- W3048623948 hasRelatedWork W2047608762 @default.
- W3048623948 hasRelatedWork W2065341885 @default.
- W3048623948 hasRelatedWork W2132115773 @default.
- W3048623948 hasRelatedWork W2355693500 @default.
- W3048623948 hasRelatedWork W2371080283 @default.
- W3048623948 hasRelatedWork W2803171320 @default.