Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048624405> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W3048624405 abstract "Objectives of the Paper: Algorithms affect large parts of people’s lives (Diakopoulos, 2014; Gillespie, 2012; Just & Latzer, 2016). Prominent examples are the algorithms that guide search engine results and what social media users see in their newsfeed on platforms such as Facebook. After the Brexit vote in Britain and the election of Donald Trump in the US in 2016, much attention was drawn to the potential influence of algorithms that may expose internet users to selective and limited content rather than the diverse information that is generally available online. Although the exact details of how corporate algorithms work are proprietary and therefore somewhat of a “black box”, some of the core factors that influence search results are location, previous search history, and the popularity and user experience (Google, 2017; Kliman-Silver et al., 2015). There is little research about how well Internet users understand algorithms and how this (lack of) knowledge affects their utilization and trust of platforms, such as search engines or social media. This will be the first quantitative study of algorithmic literacy. The paper examines these research questions: What is the effect of algorithmic literacy on Internet use and skills? (How) Does algorithmic literacy affect trust in algorithm-based platforms? (How) Does algorithmic literacy affect amount of use of algorithm-based platforms? Methods and data: We employ multivariate regressions using data from the Quello Search Project, a study of media use and politics collected in January 2017 in the United States. The 2,018 cases are a random sample of the online population. Relevance: Algorithms play an increasingly central role in our lives yet we know little about how much average Internet user understands about algorithms and how they work. The results will further our understanding of algorithmic literacy among Internet users and its consequences for trust and use practices. This has implications for policies regarding platforms that are based on algorithms. Preliminary Results:Preliminary analyses show that algorithmic literacy has a significant positive impact on platform trust for search engines; however the amount of internet use and skill using a search engine have a stronger effect. Socio-demographic factors, such as age and lifestage, have relatively little impact. Further analyses will refine these results. References: Diakopoulos, N. (2014). Algorithmic Accountability Reporting: On the Investigation of Black Boxes. New York, NY: Columbia University Academic Commons. --Gillespie, T. (2012). The relevance of algorithms. In T. Gillespie, P. J. Boczkowski, & K. A. Foot (Eds.), Media Technologies: Essays on Communication, Materiality, and Society (pp. 167–194). London, England: The MIT Press. --Google (2017). How Search Works: How Search algorithms work. Available online: https://www.google.com/search/howsearchworks/algorithms/ --Just, N., & Latzer, M. (2017). Governance by algorithms: reality construction by algorithmic selection on the Internet. Media, Culture & Society, 39(2), 238-258. --Kliman-Silver, C., Hannak, A., Lazer, D., Wilson, C., & Mislove, A. (2015, October). Location, location, location: The impact of geolocation on web search personalization. In Proceedings of the 2015 ACM Conference on Internet Measurement Conference (pp. 121-127). ACM." @default.
- W3048624405 created "2020-08-18" @default.
- W3048624405 creator A5007531079 @default.
- W3048624405 creator A5070290348 @default.
- W3048624405 date "2018-02-12" @default.
- W3048624405 modified "2023-09-23" @default.
- W3048624405 title "Public Understanding of Algorithms and Trust in Platforms" @default.
- W3048624405 hasPublicationYear "2018" @default.
- W3048624405 type Work @default.
- W3048624405 sameAs 3048624405 @default.
- W3048624405 citedByCount "0" @default.
- W3048624405 crossrefType "posted-content" @default.
- W3048624405 hasAuthorship W3048624405A5007531079 @default.
- W3048624405 hasAuthorship W3048624405A5070290348 @default.
- W3048624405 hasConcept C108827166 @default.
- W3048624405 hasConcept C110875604 @default.
- W3048624405 hasConcept C11413529 @default.
- W3048624405 hasConcept C136764020 @default.
- W3048624405 hasConcept C144024400 @default.
- W3048624405 hasConcept C17744445 @default.
- W3048624405 hasConcept C199539241 @default.
- W3048624405 hasConcept C2776035688 @default.
- W3048624405 hasConcept C2780586970 @default.
- W3048624405 hasConcept C41008148 @default.
- W3048624405 hasConcept C46312422 @default.
- W3048624405 hasConcept C518677369 @default.
- W3048624405 hasConcept C547764534 @default.
- W3048624405 hasConceptScore W3048624405C108827166 @default.
- W3048624405 hasConceptScore W3048624405C110875604 @default.
- W3048624405 hasConceptScore W3048624405C11413529 @default.
- W3048624405 hasConceptScore W3048624405C136764020 @default.
- W3048624405 hasConceptScore W3048624405C144024400 @default.
- W3048624405 hasConceptScore W3048624405C17744445 @default.
- W3048624405 hasConceptScore W3048624405C199539241 @default.
- W3048624405 hasConceptScore W3048624405C2776035688 @default.
- W3048624405 hasConceptScore W3048624405C2780586970 @default.
- W3048624405 hasConceptScore W3048624405C41008148 @default.
- W3048624405 hasConceptScore W3048624405C46312422 @default.
- W3048624405 hasConceptScore W3048624405C518677369 @default.
- W3048624405 hasConceptScore W3048624405C547764534 @default.
- W3048624405 hasOpenAccess W3048624405 @default.
- W3048624405 hasRelatedWork W1541165982 @default.
- W3048624405 hasRelatedWork W1569506887 @default.
- W3048624405 hasRelatedWork W1971957101 @default.
- W3048624405 hasRelatedWork W2055681981 @default.
- W3048624405 hasRelatedWork W2097126116 @default.
- W3048624405 hasRelatedWork W2186142523 @default.
- W3048624405 hasRelatedWork W2253916302 @default.
- W3048624405 hasRelatedWork W2370805767 @default.
- W3048624405 hasRelatedWork W2389165767 @default.
- W3048624405 hasRelatedWork W2396908462 @default.
- W3048624405 hasRelatedWork W2610965472 @default.
- W3048624405 hasRelatedWork W2675972615 @default.
- W3048624405 hasRelatedWork W283200890 @default.
- W3048624405 hasRelatedWork W2995070890 @default.
- W3048624405 hasRelatedWork W3035891052 @default.
- W3048624405 hasRelatedWork W3082568005 @default.
- W3048624405 hasRelatedWork W314947419 @default.
- W3048624405 hasRelatedWork W562740904 @default.
- W3048624405 hasRelatedWork W622266022 @default.
- W3048624405 hasRelatedWork W2266342333 @default.
- W3048624405 isParatext "false" @default.
- W3048624405 isRetracted "false" @default.
- W3048624405 magId "3048624405" @default.
- W3048624405 workType "article" @default.