Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048641682> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W3048641682 endingPage "149269" @default.
- W3048641682 startingPage "149255" @default.
- W3048641682 abstract "Cyber attacks are on the rise and each day cyber criminals are developing more and more sophisticated methods to compromise the security of their targets. Sniffing is one of the most important techniques that enables the attacker to collect information on the vulnerabilities of the devices, protocols and applications that can be exploited within the targeted network. It relies mainly on passively analyzing the traffic exchanged within the network, and due to its nature, such an activity is difficult to discover. That is why, in this article, we first revisit existing techniques and tools that can be used to perform sniffing as well as the corresponding mitigation methods. Based on this background, we propose a novel measurement-based detection method that infers whether the sniffing software is active on the suspected machine by network traffic probing and machine learning techniques. The presented experimental results prove that the proposed solution is effective." @default.
- W3048641682 created "2020-08-18" @default.
- W3048641682 creator A5018137626 @default.
- W3048641682 creator A5023991715 @default.
- W3048641682 creator A5056404349 @default.
- W3048641682 creator A5057334708 @default.
- W3048641682 creator A5089469997 @default.
- W3048641682 date "2020-01-01" @default.
- W3048641682 modified "2023-09-24" @default.
- W3048641682 title "Sniffing Detection Based on Network Traffic Probing and Machine Learning" @default.
- W3048641682 cites W2100659764 @default.
- W3048641682 cites W2603766943 @default.
- W3048641682 cites W2701059868 @default.
- W3048641682 cites W2748690817 @default.
- W3048641682 cites W2765493140 @default.
- W3048641682 cites W2769176739 @default.
- W3048641682 cites W2803881474 @default.
- W3048641682 cites W2885919737 @default.
- W3048641682 cites W2915633935 @default.
- W3048641682 cites W2969060875 @default.
- W3048641682 cites W3102476541 @default.
- W3048641682 doi "https://doi.org/10.1109/access.2020.3016076" @default.
- W3048641682 hasPublicationYear "2020" @default.
- W3048641682 type Work @default.
- W3048641682 sameAs 3048641682 @default.
- W3048641682 citedByCount "4" @default.
- W3048641682 countsByYear W30486416822021 @default.
- W3048641682 countsByYear W30486416822022 @default.
- W3048641682 crossrefType "journal-article" @default.
- W3048641682 hasAuthorship W3048641682A5018137626 @default.
- W3048641682 hasAuthorship W3048641682A5023991715 @default.
- W3048641682 hasAuthorship W3048641682A5056404349 @default.
- W3048641682 hasAuthorship W3048641682A5057334708 @default.
- W3048641682 hasAuthorship W3048641682A5089469997 @default.
- W3048641682 hasBestOaLocation W30486416821 @default.
- W3048641682 hasConcept C107457646 @default.
- W3048641682 hasConcept C119857082 @default.
- W3048641682 hasConcept C131722271 @default.
- W3048641682 hasConcept C154945302 @default.
- W3048641682 hasConcept C15744967 @default.
- W3048641682 hasConcept C169760540 @default.
- W3048641682 hasConcept C31258907 @default.
- W3048641682 hasConcept C38652104 @default.
- W3048641682 hasConcept C41008148 @default.
- W3048641682 hasConceptScore W3048641682C107457646 @default.
- W3048641682 hasConceptScore W3048641682C119857082 @default.
- W3048641682 hasConceptScore W3048641682C131722271 @default.
- W3048641682 hasConceptScore W3048641682C154945302 @default.
- W3048641682 hasConceptScore W3048641682C15744967 @default.
- W3048641682 hasConceptScore W3048641682C169760540 @default.
- W3048641682 hasConceptScore W3048641682C31258907 @default.
- W3048641682 hasConceptScore W3048641682C38652104 @default.
- W3048641682 hasConceptScore W3048641682C41008148 @default.
- W3048641682 hasFunder F4320320300 @default.
- W3048641682 hasLocation W30486416821 @default.
- W3048641682 hasOpenAccess W3048641682 @default.
- W3048641682 hasPrimaryLocation W30486416821 @default.
- W3048641682 hasRelatedWork W2130966263 @default.
- W3048641682 hasRelatedWork W2885382000 @default.
- W3048641682 hasRelatedWork W2961085424 @default.
- W3048641682 hasRelatedWork W3046775127 @default.
- W3048641682 hasRelatedWork W3107474891 @default.
- W3048641682 hasRelatedWork W4205958290 @default.
- W3048641682 hasRelatedWork W4286629047 @default.
- W3048641682 hasRelatedWork W4306321456 @default.
- W3048641682 hasRelatedWork W4306674287 @default.
- W3048641682 hasRelatedWork W4224009465 @default.
- W3048641682 hasVolume "8" @default.
- W3048641682 isParatext "false" @default.
- W3048641682 isRetracted "false" @default.
- W3048641682 magId "3048641682" @default.
- W3048641682 workType "article" @default.