Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048643622> ?p ?o ?g. }
- W3048643622 endingPage "4485" @default.
- W3048643622 startingPage "4485" @default.
- W3048643622 abstract "As an important paradigm of spontaneous brain-computer interfaces (BCIs), motor imagery (MI) has been widely used in the fields of neurological rehabilitation and robot control. Recently, researchers have proposed various methods for feature extraction and classification based on MI signals. The decoding model based on deep neural networks (DNNs) has attracted significant attention in the field of MI signal processing. Due to the strict requirements for subjects and experimental environments, it is difficult to collect large-scale and high-quality electroencephalogram (EEG) data. However, the performance of a deep learning model depends directly on the size of the datasets. Therefore, the decoding of MI-EEG signals based on a DNN has proven highly challenging in practice. Based on this, we investigated the performance of different data augmentation (DA) methods for the classification of MI data using a DNN. First, we transformed the time series signals into spectrogram images using a short-time Fourier transform (STFT). Then, we evaluated and compared the performance of different DA methods for this spectrogram data. Next, we developed a convolutional neural network (CNN) to classify the MI signals and compared the classification performance of after DA. The Fréchet inception distance (FID) was used to evaluate the quality of the generated data (GD) and the classification accuracy, and mean kappa values were used to explore the best CNN-DA method. In addition, analysis of variance (ANOVA) and paired t-tests were used to assess the significance of the results. The results showed that the deep convolutional generative adversarial network (DCGAN) provided better augmentation performance than traditional DA methods: geometric transformation (GT), autoencoder (AE), and variational autoencoder (VAE) (p < 0.01). Public datasets of the BCI competition IV (datasets 1 and 2b) were used to verify the classification performance. Improvements in the classification accuracies of 17% and 21% (p < 0.01) were observed after DA for the two datasets. In addition, the hybrid network CNN-DCGAN outperformed the other classification methods, with average kappa values of 0.564 and 0.677 for the two datasets." @default.
- W3048643622 created "2020-08-18" @default.
- W3048643622 creator A5018320716 @default.
- W3048643622 creator A5045990469 @default.
- W3048643622 creator A5056450809 @default.
- W3048643622 creator A5067508664 @default.
- W3048643622 creator A5074636697 @default.
- W3048643622 creator A5076637923 @default.
- W3048643622 creator A5078112944 @default.
- W3048643622 date "2020-08-11" @default.
- W3048643622 modified "2023-10-10" @default.
- W3048643622 title "Data Augmentation for Motor Imagery Signal Classification Based on a Hybrid Neural Network" @default.
- W3048643622 cites W1966335032 @default.
- W3048643622 cites W1969878365 @default.
- W3048643622 cites W1970242638 @default.
- W3048643622 cites W1981180721 @default.
- W3048643622 cites W1990617085 @default.
- W3048643622 cites W2075044701 @default.
- W3048643622 cites W2077092497 @default.
- W3048643622 cites W2116308679 @default.
- W3048643622 cites W2117654730 @default.
- W3048643622 cites W2120847449 @default.
- W3048643622 cites W2128909182 @default.
- W3048643622 cites W2140413964 @default.
- W3048643622 cites W2144796873 @default.
- W3048643622 cites W2158143121 @default.
- W3048643622 cites W2171782446 @default.
- W3048643622 cites W2310992461 @default.
- W3048643622 cites W2322371438 @default.
- W3048643622 cites W2557301950 @default.
- W3048643622 cites W2604262106 @default.
- W3048643622 cites W2714779472 @default.
- W3048643622 cites W2741907166 @default.
- W3048643622 cites W2750267700 @default.
- W3048643622 cites W2794022343 @default.
- W3048643622 cites W2795872267 @default.
- W3048643622 cites W2910881901 @default.
- W3048643622 cites W2911969890 @default.
- W3048643622 cites W2913201307 @default.
- W3048643622 cites W2914567046 @default.
- W3048643622 cites W2915330174 @default.
- W3048643622 cites W2915893085 @default.
- W3048643622 cites W2919115771 @default.
- W3048643622 cites W2924079966 @default.
- W3048643622 cites W2939344111 @default.
- W3048643622 cites W2943083682 @default.
- W3048643622 cites W2944559085 @default.
- W3048643622 cites W2947357661 @default.
- W3048643622 cites W2954996726 @default.
- W3048643622 cites W2963355311 @default.
- W3048643622 cites W2963830453 @default.
- W3048643622 cites W2971518519 @default.
- W3048643622 cites W2986650563 @default.
- W3048643622 cites W3004986090 @default.
- W3048643622 cites W3023937217 @default.
- W3048643622 cites W3098357269 @default.
- W3048643622 cites W3102455230 @default.
- W3048643622 doi "https://doi.org/10.3390/s20164485" @default.
- W3048643622 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7474427" @default.
- W3048643622 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32796607" @default.
- W3048643622 hasPublicationYear "2020" @default.
- W3048643622 type Work @default.
- W3048643622 sameAs 3048643622 @default.
- W3048643622 citedByCount "54" @default.
- W3048643622 countsByYear W30486436222020 @default.
- W3048643622 countsByYear W30486436222021 @default.
- W3048643622 countsByYear W30486436222022 @default.
- W3048643622 countsByYear W30486436222023 @default.
- W3048643622 crossrefType "journal-article" @default.
- W3048643622 hasAuthorship W3048643622A5018320716 @default.
- W3048643622 hasAuthorship W3048643622A5045990469 @default.
- W3048643622 hasAuthorship W3048643622A5056450809 @default.
- W3048643622 hasAuthorship W3048643622A5067508664 @default.
- W3048643622 hasAuthorship W3048643622A5074636697 @default.
- W3048643622 hasAuthorship W3048643622A5076637923 @default.
- W3048643622 hasAuthorship W3048643622A5078112944 @default.
- W3048643622 hasBestOaLocation W30486436221 @default.
- W3048643622 hasConcept C102519508 @default.
- W3048643622 hasConcept C108583219 @default.
- W3048643622 hasConcept C118552586 @default.
- W3048643622 hasConcept C134306372 @default.
- W3048643622 hasConcept C153180895 @default.
- W3048643622 hasConcept C154945302 @default.
- W3048643622 hasConcept C15744967 @default.
- W3048643622 hasConcept C166386157 @default.
- W3048643622 hasConcept C173201364 @default.
- W3048643622 hasConcept C203024314 @default.
- W3048643622 hasConcept C28490314 @default.
- W3048643622 hasConcept C33923547 @default.
- W3048643622 hasConcept C41008148 @default.
- W3048643622 hasConcept C45273575 @default.
- W3048643622 hasConcept C50644808 @default.
- W3048643622 hasConcept C522805319 @default.
- W3048643622 hasConcept C52622490 @default.
- W3048643622 hasConcept C54808283 @default.
- W3048643622 hasConcept C57273362 @default.
- W3048643622 hasConcept C69738355 @default.
- W3048643622 hasConcept C76155785 @default.