Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048650059> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3048650059 endingPage "145994" @default.
- W3048650059 startingPage "145984" @default.
- W3048650059 abstract "Motion pattern segmentation for crowded video scenes is an open problem because of the inability of existing approaches to tackle unpredictable crowd behaviour across varied scenes. To address this problem, we propose a Spatio-Angular Density-based Clustering (SADC) approach, which performs motion pattern segmentation by clustering the spatial and angular information obtained from the input trajectories. The k-nearest neighbours of each trajectory and the angular deviation between trajectories constitute the spatial and angular information, respectively. Effective integration of the spatio-angular information with an improvised density-based clustering algorithm makes this approach scene-independent. The performance of most clustering algorithms in the literature is parameter-driven. Choosing a single parameter value for different types of scenes decreases the overall clustering performance. In this article, we have shown that our approach is robust to scene changes using a single threshold, and, through the analysis of parameters across eight commonly occurring crowded scenarios, we point out the range of thresholds that are suitable for each scene category. We evaluate the proposed approach on the benchmarked CUHK dataset. Theexperimental results show the superior clustering performance and execution speed of the proposed approachwhen compared to the state-of-the-art over different scene categories." @default.
- W3048650059 created "2020-08-18" @default.
- W3048650059 creator A5007765454 @default.
- W3048650059 creator A5072698471 @default.
- W3048650059 creator A5075709484 @default.
- W3048650059 date "2020-01-01" @default.
- W3048650059 modified "2023-10-16" @default.
- W3048650059 title "Scene-Independent Motion Pattern Segmentation in Crowded Video Scenes Using Spatio-Angular Density-Based Clustering" @default.
- W3048650059 cites W1979089718 @default.
- W3048650059 cites W1981398125 @default.
- W3048650059 cites W1992124078 @default.
- W3048650059 cites W2002347177 @default.
- W3048650059 cites W2046082958 @default.
- W3048650059 cites W2079023123 @default.
- W3048650059 cites W2108404684 @default.
- W3048650059 cites W2117480478 @default.
- W3048650059 cites W2121839066 @default.
- W3048650059 cites W2138835141 @default.
- W3048650059 cites W2167052694 @default.
- W3048650059 cites W2183706426 @default.
- W3048650059 cites W2225382942 @default.
- W3048650059 cites W2274407394 @default.
- W3048650059 cites W2322990480 @default.
- W3048650059 cites W2325880033 @default.
- W3048650059 cites W2503288456 @default.
- W3048650059 cites W2510331996 @default.
- W3048650059 cites W2548835351 @default.
- W3048650059 cites W2605127999 @default.
- W3048650059 cites W2623223561 @default.
- W3048650059 cites W2665124875 @default.
- W3048650059 cites W2761460641 @default.
- W3048650059 cites W2767472986 @default.
- W3048650059 cites W2774205825 @default.
- W3048650059 cites W2790571983 @default.
- W3048650059 cites W2805447019 @default.
- W3048650059 cites W2888648119 @default.
- W3048650059 cites W2897819140 @default.
- W3048650059 cites W2898853710 @default.
- W3048650059 cites W2920069724 @default.
- W3048650059 cites W4244030505 @default.
- W3048650059 cites W47624021 @default.
- W3048650059 doi "https://doi.org/10.1109/access.2020.3015375" @default.
- W3048650059 hasPublicationYear "2020" @default.
- W3048650059 type Work @default.
- W3048650059 sameAs 3048650059 @default.
- W3048650059 citedByCount "3" @default.
- W3048650059 countsByYear W30486500592021 @default.
- W3048650059 countsByYear W30486500592022 @default.
- W3048650059 countsByYear W30486500592023 @default.
- W3048650059 crossrefType "journal-article" @default.
- W3048650059 hasAuthorship W3048650059A5007765454 @default.
- W3048650059 hasAuthorship W3048650059A5072698471 @default.
- W3048650059 hasAuthorship W3048650059A5075709484 @default.
- W3048650059 hasBestOaLocation W30486500591 @default.
- W3048650059 hasConcept C104114177 @default.
- W3048650059 hasConcept C124504099 @default.
- W3048650059 hasConcept C153180895 @default.
- W3048650059 hasConcept C154945302 @default.
- W3048650059 hasConcept C31972630 @default.
- W3048650059 hasConcept C41008148 @default.
- W3048650059 hasConcept C73555534 @default.
- W3048650059 hasConcept C89600930 @default.
- W3048650059 hasConceptScore W3048650059C104114177 @default.
- W3048650059 hasConceptScore W3048650059C124504099 @default.
- W3048650059 hasConceptScore W3048650059C153180895 @default.
- W3048650059 hasConceptScore W3048650059C154945302 @default.
- W3048650059 hasConceptScore W3048650059C31972630 @default.
- W3048650059 hasConceptScore W3048650059C41008148 @default.
- W3048650059 hasConceptScore W3048650059C73555534 @default.
- W3048650059 hasConceptScore W3048650059C89600930 @default.
- W3048650059 hasLocation W30486500591 @default.
- W3048650059 hasOpenAccess W3048650059 @default.
- W3048650059 hasPrimaryLocation W30486500591 @default.
- W3048650059 hasRelatedWork W1631910785 @default.
- W3048650059 hasRelatedWork W1669643531 @default.
- W3048650059 hasRelatedWork W2110230079 @default.
- W3048650059 hasRelatedWork W2117664411 @default.
- W3048650059 hasRelatedWork W2117933325 @default.
- W3048650059 hasRelatedWork W2122581818 @default.
- W3048650059 hasRelatedWork W2159066190 @default.
- W3048650059 hasRelatedWork W2739874619 @default.
- W3048650059 hasRelatedWork W2895616727 @default.
- W3048650059 hasRelatedWork W4286448033 @default.
- W3048650059 hasVolume "8" @default.
- W3048650059 isParatext "false" @default.
- W3048650059 isRetracted "false" @default.
- W3048650059 magId "3048650059" @default.
- W3048650059 workType "article" @default.