Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048651391> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3048651391 endingPage "290" @default.
- W3048651391 startingPage "269" @default.
- W3048651391 abstract "In classical regression analysis, the ordinary least-squares estimation is the best estimation if the essential assumptions are satisfied. However, if the data does not satisfy some of these assumptions, then results can be misleading. Especially, outliers violate the assumption of normally distributed residuals in the least-squares regression. Robust regression is a modern technique for analyzing data that are contaminated with outliers. The standard setup is to assume that the given samples are derived from a nice distribution, but that an adversary as the power to arbitrary corrupt a constant fraction of the observed data. With advances in technologies, most data problems carry structures such as the number of covariates (p) may exceed the sample size (n), as in the case with high dimensional dataset. Due to some limitations in high dimensional problems, the classical approaches may no longer be useful. One of the alternative approaches commonly used in the ridge estimator introduced by Hoerl and Kennard (Technometrics 12:55–67, 1970). The robust ridge regression provides a solution for the high dimensional dataset with outliers. To be more specific, when prior information (in the form of non-sample information) is available about the vector parameter, the estimation can be improved. This information, known as uncertain prior information or restriction, is useful in the estimation procedure, especially, when the information based on the sample data may be limited. The information may be due to (a) a fact known from theoretical or experimental considerations, (b) a hypothesis that need to be tested or, (c) an artificially imposed condition to reduce or eliminate redundancy in the description of the model. On the other hand, in some experimental cases, it is not certain whether this prior information hold. The consequence of incorporating non-sample information depends on the quality or reliability of the information introduced in the estimation process. This uncertain prior information, in the form of hypotheses, can be used in two different ways: (a) a preliminary test estimation procedure, and (b) the Stein-type shrinkage estimation. We consider robust ridge estimation in semiparametric high dimensional data and propose a preliminary test, Stein-type and positive-rule Stein-type robust estimators. For these estimators, a real data example is considered to illustrate the efficiency of the estimators." @default.
- W3048651391 created "2020-08-18" @default.
- W3048651391 creator A5048007244 @default.
- W3048651391 creator A5048096474 @default.
- W3048651391 creator A5086530744 @default.
- W3048651391 date "2020-01-01" @default.
- W3048651391 modified "2023-10-16" @default.
- W3048651391 title "Using Improved Robust Estimators to Semiparametric Model with High Dimensional Data" @default.
- W3048651391 cites W1824682467 @default.
- W3048651391 cites W1973819569 @default.
- W3048651391 cites W1986948589 @default.
- W3048651391 cites W2005652256 @default.
- W3048651391 cites W2005901253 @default.
- W3048651391 cites W2006318697 @default.
- W3048651391 cites W2007876140 @default.
- W3048651391 cites W2011627547 @default.
- W3048651391 cites W2035088317 @default.
- W3048651391 cites W2036460498 @default.
- W3048651391 cites W2049767351 @default.
- W3048651391 cites W2051936841 @default.
- W3048651391 cites W2055380587 @default.
- W3048651391 cites W2056508263 @default.
- W3048651391 cites W2068142270 @default.
- W3048651391 cites W2069519120 @default.
- W3048651391 cites W2079231220 @default.
- W3048651391 cites W2082662840 @default.
- W3048651391 cites W2088940756 @default.
- W3048651391 cites W2089256781 @default.
- W3048651391 cites W2097209031 @default.
- W3048651391 cites W2115292063 @default.
- W3048651391 cites W2142972916 @default.
- W3048651391 cites W2152701363 @default.
- W3048651391 cites W2309770403 @default.
- W3048651391 cites W2344853450 @default.
- W3048651391 cites W2375215062 @default.
- W3048651391 cites W2419815693 @default.
- W3048651391 cites W2492428594 @default.
- W3048651391 cites W2498631646 @default.
- W3048651391 cites W2505986792 @default.
- W3048651391 cites W2540116004 @default.
- W3048651391 cites W2541905674 @default.
- W3048651391 cites W2592929091 @default.
- W3048651391 cites W2615347437 @default.
- W3048651391 cites W2743442946 @default.
- W3048651391 cites W2787894218 @default.
- W3048651391 cites W3015968003 @default.
- W3048651391 cites W3101248422 @default.
- W3048651391 cites W4234698323 @default.
- W3048651391 cites W4247571494 @default.
- W3048651391 doi "https://doi.org/10.1007/978-3-030-42196-0_11" @default.
- W3048651391 hasPublicationYear "2020" @default.
- W3048651391 type Work @default.
- W3048651391 sameAs 3048651391 @default.
- W3048651391 citedByCount "2" @default.
- W3048651391 countsByYear W30486513912021 @default.
- W3048651391 countsByYear W30486513912022 @default.
- W3048651391 crossrefType "book-chapter" @default.
- W3048651391 hasAuthorship W3048651391A5048007244 @default.
- W3048651391 hasAuthorship W3048651391A5048096474 @default.
- W3048651391 hasAuthorship W3048651391A5086530744 @default.
- W3048651391 hasConcept C105795698 @default.
- W3048651391 hasConcept C124101348 @default.
- W3048651391 hasConcept C185429906 @default.
- W3048651391 hasConcept C33923547 @default.
- W3048651391 hasConcept C41008148 @default.
- W3048651391 hasConcept C67226441 @default.
- W3048651391 hasConcept C70259352 @default.
- W3048651391 hasConcept C79337645 @default.
- W3048651391 hasConcept C9936470 @default.
- W3048651391 hasConcept C99656134 @default.
- W3048651391 hasConceptScore W3048651391C105795698 @default.
- W3048651391 hasConceptScore W3048651391C124101348 @default.
- W3048651391 hasConceptScore W3048651391C185429906 @default.
- W3048651391 hasConceptScore W3048651391C33923547 @default.
- W3048651391 hasConceptScore W3048651391C41008148 @default.
- W3048651391 hasConceptScore W3048651391C67226441 @default.
- W3048651391 hasConceptScore W3048651391C70259352 @default.
- W3048651391 hasConceptScore W3048651391C79337645 @default.
- W3048651391 hasConceptScore W3048651391C9936470 @default.
- W3048651391 hasConceptScore W3048651391C99656134 @default.
- W3048651391 hasLocation W30486513911 @default.
- W3048651391 hasOpenAccess W3048651391 @default.
- W3048651391 hasPrimaryLocation W30486513911 @default.
- W3048651391 hasRelatedWork W1604029592 @default.
- W3048651391 hasRelatedWork W1935884779 @default.
- W3048651391 hasRelatedWork W2012115149 @default.
- W3048651391 hasRelatedWork W2165927859 @default.
- W3048651391 hasRelatedWork W2922278714 @default.
- W3048651391 hasRelatedWork W3169381472 @default.
- W3048651391 hasRelatedWork W3186653746 @default.
- W3048651391 hasRelatedWork W3207789682 @default.
- W3048651391 hasRelatedWork W4200351729 @default.
- W3048651391 hasRelatedWork W4379470703 @default.
- W3048651391 isParatext "false" @default.
- W3048651391 isRetracted "false" @default.
- W3048651391 magId "3048651391" @default.
- W3048651391 workType "book-chapter" @default.