Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048652369> ?p ?o ?g. }
- W3048652369 endingPage "123285" @default.
- W3048652369 startingPage "123285" @default.
- W3048652369 abstract "Prediction of solar irradiance is an essential requirement for reliable planning and efficient designing of solar energy systems. Thus, in present work, a new ensemble model, which consists of two advance base models, namely extreme gradient boosting forest and deep neural networks (XGBF-DNN), is proposed for hourly global horizontal irradiance forecast. These base models are integrated using ridge regression to avoid the over-fitting problem. Moreover, the proposed framework is designed carefully to ensure the diversity in base models, as diversity among base models is widely recognized as a key to the success of an ensemble model. Further, to enhance the model’s accuracy, a subset of input features is selected, which includes temperature, clear-sky index, relative humidity, and hour of the day as the most relevant features. To provide a comprehensive and reliable assessment, proposed model is validated with data from three different climatic Indian locations. Subsequently, a seasonal analysis is also carried out to provide a deeper insight into the model’s performance. The performance of the proposed model is evaluated by comparing the prediction results with different models, including benchmark smart persistence and traditional machine learning techniques, such as random forest, support vector regression, extreme gradient boosting forest and deep neural networks. The proposed ensemble model exhibits the best combination of stability and prediction accuracy irrespective of seasonal variations in weather conditions and shows a forecast skill score in a range of about 33%–40% in prediction error. The predictive performance and stability make XGBF-DNN an ideal and reliable model for hourly global horizontal irradiance prediction. Therefore, the developed model can be advised to serve as a potential prediction model in several domains, such as forecasting of solar power, wind power, electricity consumption, etc." @default.
- W3048652369 created "2020-08-18" @default.
- W3048652369 creator A5032041379 @default.
- W3048652369 creator A5082753354 @default.
- W3048652369 date "2021-01-01" @default.
- W3048652369 modified "2023-10-16" @default.
- W3048652369 title "Extreme gradient boosting and deep neural network based ensemble learning approach to forecast hourly solar irradiance" @default.
- W3048652369 cites W1967546078 @default.
- W3048652369 cites W1969372665 @default.
- W3048652369 cites W1978533947 @default.
- W3048652369 cites W2039395979 @default.
- W3048652369 cites W2046890513 @default.
- W3048652369 cites W2073738917 @default.
- W3048652369 cites W2100805904 @default.
- W3048652369 cites W2135695572 @default.
- W3048652369 cites W2189643546 @default.
- W3048652369 cites W2196705095 @default.
- W3048652369 cites W2201256495 @default.
- W3048652369 cites W2339332955 @default.
- W3048652369 cites W2569349941 @default.
- W3048652369 cites W2588763092 @default.
- W3048652369 cites W2603152443 @default.
- W3048652369 cites W2614048634 @default.
- W3048652369 cites W2614843160 @default.
- W3048652369 cites W2729015950 @default.
- W3048652369 cites W2762810357 @default.
- W3048652369 cites W2772978762 @default.
- W3048652369 cites W2774733241 @default.
- W3048652369 cites W2780554042 @default.
- W3048652369 cites W2781426785 @default.
- W3048652369 cites W2784090553 @default.
- W3048652369 cites W2791136441 @default.
- W3048652369 cites W2792326773 @default.
- W3048652369 cites W2792371264 @default.
- W3048652369 cites W2792986592 @default.
- W3048652369 cites W2808855524 @default.
- W3048652369 cites W2808902576 @default.
- W3048652369 cites W2879959793 @default.
- W3048652369 cites W2888945543 @default.
- W3048652369 cites W2889496066 @default.
- W3048652369 cites W2912681060 @default.
- W3048652369 cites W2914530224 @default.
- W3048652369 cites W2915081556 @default.
- W3048652369 cites W2924408274 @default.
- W3048652369 cites W2933878133 @default.
- W3048652369 cites W2981208062 @default.
- W3048652369 cites W2991802886 @default.
- W3048652369 cites W2991985550 @default.
- W3048652369 cites W59537728 @default.
- W3048652369 cites W750331148 @default.
- W3048652369 doi "https://doi.org/10.1016/j.jclepro.2020.123285" @default.
- W3048652369 hasPublicationYear "2021" @default.
- W3048652369 type Work @default.
- W3048652369 sameAs 3048652369 @default.
- W3048652369 citedByCount "94" @default.
- W3048652369 countsByYear W30486523692020 @default.
- W3048652369 countsByYear W30486523692021 @default.
- W3048652369 countsByYear W30486523692022 @default.
- W3048652369 countsByYear W30486523692023 @default.
- W3048652369 crossrefType "journal-article" @default.
- W3048652369 hasAuthorship W3048652369A5032041379 @default.
- W3048652369 hasAuthorship W3048652369A5082753354 @default.
- W3048652369 hasConcept C119857082 @default.
- W3048652369 hasConcept C119898033 @default.
- W3048652369 hasConcept C121332964 @default.
- W3048652369 hasConcept C12267149 @default.
- W3048652369 hasConcept C13280743 @default.
- W3048652369 hasConcept C153294291 @default.
- W3048652369 hasConcept C154945302 @default.
- W3048652369 hasConcept C169258074 @default.
- W3048652369 hasConcept C185798385 @default.
- W3048652369 hasConcept C205649164 @default.
- W3048652369 hasConcept C2780150128 @default.
- W3048652369 hasConcept C41008148 @default.
- W3048652369 hasConcept C45804977 @default.
- W3048652369 hasConcept C45942800 @default.
- W3048652369 hasConcept C46423501 @default.
- W3048652369 hasConcept C46686674 @default.
- W3048652369 hasConcept C50644808 @default.
- W3048652369 hasConcept C62520636 @default.
- W3048652369 hasConcept C70153297 @default.
- W3048652369 hasConcept C9695528 @default.
- W3048652369 hasConceptScore W3048652369C119857082 @default.
- W3048652369 hasConceptScore W3048652369C119898033 @default.
- W3048652369 hasConceptScore W3048652369C121332964 @default.
- W3048652369 hasConceptScore W3048652369C12267149 @default.
- W3048652369 hasConceptScore W3048652369C13280743 @default.
- W3048652369 hasConceptScore W3048652369C153294291 @default.
- W3048652369 hasConceptScore W3048652369C154945302 @default.
- W3048652369 hasConceptScore W3048652369C169258074 @default.
- W3048652369 hasConceptScore W3048652369C185798385 @default.
- W3048652369 hasConceptScore W3048652369C205649164 @default.
- W3048652369 hasConceptScore W3048652369C2780150128 @default.
- W3048652369 hasConceptScore W3048652369C41008148 @default.
- W3048652369 hasConceptScore W3048652369C45804977 @default.
- W3048652369 hasConceptScore W3048652369C45942800 @default.
- W3048652369 hasConceptScore W3048652369C46423501 @default.
- W3048652369 hasConceptScore W3048652369C46686674 @default.