Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048661446> ?p ?o ?g. }
- W3048661446 endingPage "e000631" @default.
- W3048661446 startingPage "e000631" @default.
- W3048661446 abstract "Immune checkpoint inhibitors (ICIs) have revolutionized the therapeutic landscape of gastrointestinal cancer. However, biomarkers correlated with the efficacy of ICIs in gastrointestinal cancer are still lacking. In this study, we performed 395-plex immune oncology (IO)-related gene target sequencing in tumor samples from 96 patients with metastatic gastrointestinal cancer patients treated with ICIs, and a linear support vector machine learning strategy was applied to construct a predictive model. ResultsAll 96 patients were randomly assigned into the discovery (n=72) and validation (n=24) cohorts. A 24-gene RNA signature (termed the IO-score) was constructed from 395 immune-related gene expression profiling using a machine learning strategy to identify patients who might benefit from ICIs. The durable clinical benefit rate was higher in patients with a high IO-score than in patients with a low IO-score (discovery cohort: 92.0% vs 4.3%, p<0.001; validation cohort: 85.7% vs 17.6%, p=0.004). The IO-score may exhibit a higher predictive value in the discovery (area under the receiver operating characteristic curve (AUC)=0.97)) and validation (AUC=0.74) cohorts compared with the programmed death ligand 1 positivity (AUC=0.52), tumor mutational burden (AUC=0.69) and microsatellite instability status (AUC=0.59) in the combined cohort. Moreover, patients with a high IO-score also exhibited a prolonged overall survival compared with patients with a low IO-score (discovery cohort: HR, 0.29; 95% CI 0.15 to 0.56; p=0.003; validation cohort: HR, 0.32; 95% CI 0.10 to 1.05; p=0.04). Taken together, our results indicated the potential of IO-score as a biomarker for immunotherapy in patients with gastrointestinal cancers." @default.
- W3048661446 created "2020-08-18" @default.
- W3048661446 creator A5003866201 @default.
- W3048661446 creator A5006511913 @default.
- W3048661446 creator A5015849886 @default.
- W3048661446 creator A5017114335 @default.
- W3048661446 creator A5022256556 @default.
- W3048661446 creator A5035535613 @default.
- W3048661446 creator A5037996246 @default.
- W3048661446 creator A5038853266 @default.
- W3048661446 creator A5043941211 @default.
- W3048661446 creator A5044063199 @default.
- W3048661446 creator A5046118596 @default.
- W3048661446 creator A5052883326 @default.
- W3048661446 creator A5054785361 @default.
- W3048661446 creator A5059392900 @default.
- W3048661446 creator A5061084605 @default.
- W3048661446 creator A5065755796 @default.
- W3048661446 creator A5068252474 @default.
- W3048661446 creator A5072537482 @default.
- W3048661446 creator A5078632164 @default.
- W3048661446 creator A5083365013 @default.
- W3048661446 date "2020-08-01" @default.
- W3048661446 modified "2023-10-17" @default.
- W3048661446 title "Prediction of immune checkpoint inhibition with immune oncology-related gene expression in gastrointestinal cancer using a machine learning classifier" @default.
- W3048661446 cites W2020492074 @default.
- W3048661446 cites W2049553585 @default.
- W3048661446 cites W2143895061 @default.
- W3048661446 cites W2559602085 @default.
- W3048661446 cites W2655262992 @default.
- W3048661446 cites W2747774814 @default.
- W3048661446 cites W2767857925 @default.
- W3048661446 cites W2789258259 @default.
- W3048661446 cites W2884124602 @default.
- W3048661446 cites W2897815318 @default.
- W3048661446 cites W2909679049 @default.
- W3048661446 cites W2944675676 @default.
- W3048661446 cites W2954094199 @default.
- W3048661446 cites W2963215245 @default.
- W3048661446 cites W2971445256 @default.
- W3048661446 cites W2981552079 @default.
- W3048661446 cites W2983296614 @default.
- W3048661446 cites W2986483086 @default.
- W3048661446 doi "https://doi.org/10.1136/jitc-2020-000631" @default.
- W3048661446 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7430448" @default.
- W3048661446 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32792359" @default.
- W3048661446 hasPublicationYear "2020" @default.
- W3048661446 type Work @default.
- W3048661446 sameAs 3048661446 @default.
- W3048661446 citedByCount "18" @default.
- W3048661446 countsByYear W30486614462020 @default.
- W3048661446 countsByYear W30486614462021 @default.
- W3048661446 countsByYear W30486614462022 @default.
- W3048661446 countsByYear W30486614462023 @default.
- W3048661446 crossrefType "journal-article" @default.
- W3048661446 hasAuthorship W3048661446A5003866201 @default.
- W3048661446 hasAuthorship W3048661446A5006511913 @default.
- W3048661446 hasAuthorship W3048661446A5015849886 @default.
- W3048661446 hasAuthorship W3048661446A5017114335 @default.
- W3048661446 hasAuthorship W3048661446A5022256556 @default.
- W3048661446 hasAuthorship W3048661446A5035535613 @default.
- W3048661446 hasAuthorship W3048661446A5037996246 @default.
- W3048661446 hasAuthorship W3048661446A5038853266 @default.
- W3048661446 hasAuthorship W3048661446A5043941211 @default.
- W3048661446 hasAuthorship W3048661446A5044063199 @default.
- W3048661446 hasAuthorship W3048661446A5046118596 @default.
- W3048661446 hasAuthorship W3048661446A5052883326 @default.
- W3048661446 hasAuthorship W3048661446A5054785361 @default.
- W3048661446 hasAuthorship W3048661446A5059392900 @default.
- W3048661446 hasAuthorship W3048661446A5061084605 @default.
- W3048661446 hasAuthorship W3048661446A5065755796 @default.
- W3048661446 hasAuthorship W3048661446A5068252474 @default.
- W3048661446 hasAuthorship W3048661446A5072537482 @default.
- W3048661446 hasAuthorship W3048661446A5078632164 @default.
- W3048661446 hasAuthorship W3048661446A5083365013 @default.
- W3048661446 hasBestOaLocation W30486614461 @default.
- W3048661446 hasConcept C104317684 @default.
- W3048661446 hasConcept C121608353 @default.
- W3048661446 hasConcept C126322002 @default.
- W3048661446 hasConcept C143998085 @default.
- W3048661446 hasConcept C180754005 @default.
- W3048661446 hasConcept C203014093 @default.
- W3048661446 hasConcept C2779767149 @default.
- W3048661446 hasConcept C55493867 @default.
- W3048661446 hasConcept C58471807 @default.
- W3048661446 hasConcept C61320498 @default.
- W3048661446 hasConcept C71924100 @default.
- W3048661446 hasConcept C72563966 @default.
- W3048661446 hasConcept C86803240 @default.
- W3048661446 hasConcept C8891405 @default.
- W3048661446 hasConceptScore W3048661446C104317684 @default.
- W3048661446 hasConceptScore W3048661446C121608353 @default.
- W3048661446 hasConceptScore W3048661446C126322002 @default.
- W3048661446 hasConceptScore W3048661446C143998085 @default.
- W3048661446 hasConceptScore W3048661446C180754005 @default.
- W3048661446 hasConceptScore W3048661446C203014093 @default.
- W3048661446 hasConceptScore W3048661446C2779767149 @default.
- W3048661446 hasConceptScore W3048661446C55493867 @default.