Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048661523> ?p ?o ?g. }
- W3048661523 endingPage "103528" @default.
- W3048661523 startingPage "103528" @default.
- W3048661523 abstract "When using tree-based methods to develop predictive analytics and early warning systems for preventive healthcare, it is important to use an appropriate imputation method to prevent learning the missingness pattern. To demonstrate this, we developed a novel simulation that generated synthetic electronic health record data using a variational autoencoder with a custom loss function, which took into account the high missing rate of electronic health data. We showed that when tree-based methods learn missingness patterns (correlated with adverse events) in electronic health record data, this leads to decreased performance if the system is used in a new setting that has different missingness patterns. Performance is worst in this scenario when the missing rate between those with and without an adverse event is the greatest. We found that randomized and Bayesian regression imputation methods mitigate the issue of learning the missingness pattern for tree-based methods. We used this information to build a novel early warning system for predicting patient deterioration in general wards and telemetry units: PICTURE (Predicting Intensive Care Transfers and other UnfoReseen Events). To develop, tune, and test PICTURE, we used labs and vital signs from electronic health records of adult patients over four years (n = 133,089 encounters). We analyzed primary outcomes of unplanned intensive care unit transfer, emergency vasoactive medication administration, cardiac arrest, and death. We compared PICTURE with existing early warning systems and logistic regression at multiple levels of granularity. When analyzing PICTURE on the testing set using all observations within a hospital encounter (event rate = 3.4%), PICTURE had an area under the receiver operating characteristic curve (AUROC) of 0.83 and an adjusted (event rate = 4%) area under the precision-recall curve (AUPR) of 0.27, while the next best tested method—regularized logistic regression—had an AUROC of 0.80 and an adjusted AUPR of 0.22. To ensure system interpretability, we applied a state-of-the-art prediction explainer that provided a ranked list of features contributing most to the prediction. Though it is currently difficult to compare machine learning–based early warning systems, a rudimentary comparison with published scores demonstrated that PICTURE is on par with state-of-the-art machine learning systems. To facilitate more robust comparisons and development of early warning systems in the future, we have released our variational autoencoder’s code and weights so researchers can (a) test their models on data similar to our institution and (b) make their own synthetic datasets." @default.
- W3048661523 created "2020-08-18" @default.
- W3048661523 creator A5007208536 @default.
- W3048661523 creator A5019985053 @default.
- W3048661523 creator A5028683362 @default.
- W3048661523 creator A5030205118 @default.
- W3048661523 creator A5031654455 @default.
- W3048661523 creator A5040716330 @default.
- W3048661523 creator A5045618287 @default.
- W3048661523 creator A5086684396 @default.
- W3048661523 date "2020-10-01" @default.
- W3048661523 modified "2023-09-26" @default.
- W3048661523 title "Demonstrating the consequences of learning missingness patterns in early warning systems for preventative health care: A novel simulation and solution" @default.
- W3048661523 cites W16455933 @default.
- W3048661523 cites W1898928487 @default.
- W3048661523 cites W1994763846 @default.
- W3048661523 cites W2095223321 @default.
- W3048661523 cites W2096978103 @default.
- W3048661523 cites W2150577673 @default.
- W3048661523 cites W2150979970 @default.
- W3048661523 cites W2167139263 @default.
- W3048661523 cites W2323525554 @default.
- W3048661523 cites W2342249984 @default.
- W3048661523 cites W2522325416 @default.
- W3048661523 cites W2624697962 @default.
- W3048661523 cites W2755492370 @default.
- W3048661523 cites W2770006511 @default.
- W3048661523 cites W2778830059 @default.
- W3048661523 cites W2803121971 @default.
- W3048661523 cites W2901954625 @default.
- W3048661523 cites W2904931021 @default.
- W3048661523 cites W2910420059 @default.
- W3048661523 cites W2913788152 @default.
- W3048661523 cites W2917343756 @default.
- W3048661523 cites W2968919852 @default.
- W3048661523 cites W2996889063 @default.
- W3048661523 cites W3010140860 @default.
- W3048661523 cites W3012140936 @default.
- W3048661523 cites W3015248561 @default.
- W3048661523 cites W3020729718 @default.
- W3048661523 cites W3102476541 @default.
- W3048661523 cites W3105446653 @default.
- W3048661523 doi "https://doi.org/10.1016/j.jbi.2020.103528" @default.
- W3048661523 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32795506" @default.
- W3048661523 hasPublicationYear "2020" @default.
- W3048661523 type Work @default.
- W3048661523 sameAs 3048661523 @default.
- W3048661523 citedByCount "8" @default.
- W3048661523 countsByYear W30486615232021 @default.
- W3048661523 countsByYear W30486615232022 @default.
- W3048661523 countsByYear W30486615232023 @default.
- W3048661523 crossrefType "journal-article" @default.
- W3048661523 hasAuthorship W3048661523A5007208536 @default.
- W3048661523 hasAuthorship W3048661523A5019985053 @default.
- W3048661523 hasAuthorship W3048661523A5028683362 @default.
- W3048661523 hasAuthorship W3048661523A5030205118 @default.
- W3048661523 hasAuthorship W3048661523A5031654455 @default.
- W3048661523 hasAuthorship W3048661523A5040716330 @default.
- W3048661523 hasAuthorship W3048661523A5045618287 @default.
- W3048661523 hasAuthorship W3048661523A5086684396 @default.
- W3048661523 hasBestOaLocation W30486615231 @default.
- W3048661523 hasConcept C101738243 @default.
- W3048661523 hasConcept C108583219 @default.
- W3048661523 hasConcept C119857082 @default.
- W3048661523 hasConcept C124101348 @default.
- W3048661523 hasConcept C151956035 @default.
- W3048661523 hasConcept C154945302 @default.
- W3048661523 hasConcept C160735492 @default.
- W3048661523 hasConcept C162324750 @default.
- W3048661523 hasConcept C177713679 @default.
- W3048661523 hasConcept C2776376669 @default.
- W3048661523 hasConcept C2777671062 @default.
- W3048661523 hasConcept C29825287 @default.
- W3048661523 hasConcept C41008148 @default.
- W3048661523 hasConcept C50522688 @default.
- W3048661523 hasConcept C545542383 @default.
- W3048661523 hasConcept C58041806 @default.
- W3048661523 hasConcept C71924100 @default.
- W3048661523 hasConcept C76155785 @default.
- W3048661523 hasConcept C83209312 @default.
- W3048661523 hasConcept C9357733 @default.
- W3048661523 hasConceptScore W3048661523C101738243 @default.
- W3048661523 hasConceptScore W3048661523C108583219 @default.
- W3048661523 hasConceptScore W3048661523C119857082 @default.
- W3048661523 hasConceptScore W3048661523C124101348 @default.
- W3048661523 hasConceptScore W3048661523C151956035 @default.
- W3048661523 hasConceptScore W3048661523C154945302 @default.
- W3048661523 hasConceptScore W3048661523C160735492 @default.
- W3048661523 hasConceptScore W3048661523C162324750 @default.
- W3048661523 hasConceptScore W3048661523C177713679 @default.
- W3048661523 hasConceptScore W3048661523C2776376669 @default.
- W3048661523 hasConceptScore W3048661523C2777671062 @default.
- W3048661523 hasConceptScore W3048661523C29825287 @default.
- W3048661523 hasConceptScore W3048661523C41008148 @default.
- W3048661523 hasConceptScore W3048661523C50522688 @default.
- W3048661523 hasConceptScore W3048661523C545542383 @default.
- W3048661523 hasConceptScore W3048661523C58041806 @default.
- W3048661523 hasConceptScore W3048661523C71924100 @default.