Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048670727> ?p ?o ?g. }
- W3048670727 endingPage "102075" @default.
- W3048670727 startingPage "102075" @default.
- W3048670727 abstract "Various studies showed driving fatigue is one import factor that caused traffic accidents, so it’s of great significance to seek an effective detection method for the safety of life and property. Electroencephalogram (EEG) is regarded as the “gold standard” in fatigue detection. However, due to its non-linear, non-stationary and vulnerable to the environmental noise, it’s still difficult to achieve an accurate and reliable recognition result. In this paper, we propose a driving fatigue detection method based on multiple nonlinear features fusion strategy. Firstly, six widely used nonlinear features for EEG signals are included for feature extraction. Second, those extracted features are further fused and classified with the multiple kernel learning (MKL) based SVM. Finally, we take the full use of automatic feature extraction and classification ability of deep neural network to analyze the critical EEG channels based on the optimal single nonlinear feature of spectral entropy. Experimental results show that the single nonlinear feature based model achieved the best recognition accuracy of 81.33% with spectral entropy. The proposed multiple nonlinear features fusion method of MKL obtained the best accuracy of 84.37% with four types of entropy features. Two typical feature extraction methods of autoregressive and power spectrum density are used as comparative work to illustrate the effectiveness of the established dataset and the proposed method. The selected two groups of key electrodes are verified through experiments." @default.
- W3048670727 created "2020-08-18" @default.
- W3048670727 creator A5012641373 @default.
- W3048670727 creator A5026827945 @default.
- W3048670727 creator A5051487932 @default.
- W3048670727 creator A5079034347 @default.
- W3048670727 creator A5080308075 @default.
- W3048670727 creator A5088302108 @default.
- W3048670727 date "2020-09-01" @default.
- W3048670727 modified "2023-10-16" @default.
- W3048670727 title "Multiple nonlinear features fusion based driving fatigue detection" @default.
- W3048670727 cites W1868744023 @default.
- W3048670727 cites W1947251450 @default.
- W3048670727 cites W1964000773 @default.
- W3048670727 cites W1971328201 @default.
- W3048670727 cites W2008544797 @default.
- W3048670727 cites W2012433634 @default.
- W3048670727 cites W2023133322 @default.
- W3048670727 cites W2025623975 @default.
- W3048670727 cites W2027208707 @default.
- W3048670727 cites W2048423227 @default.
- W3048670727 cites W2052770734 @default.
- W3048670727 cites W2063682302 @default.
- W3048670727 cites W2098844365 @default.
- W3048670727 cites W2128495200 @default.
- W3048670727 cites W2222577885 @default.
- W3048670727 cites W2241667675 @default.
- W3048670727 cites W2316106704 @default.
- W3048670727 cites W2468367897 @default.
- W3048670727 cites W2558193840 @default.
- W3048670727 cites W2587124275 @default.
- W3048670727 cites W2594079185 @default.
- W3048670727 cites W2595203562 @default.
- W3048670727 cites W2603534282 @default.
- W3048670727 cites W2610184357 @default.
- W3048670727 cites W2619709118 @default.
- W3048670727 cites W2739596448 @default.
- W3048670727 cites W2743255627 @default.
- W3048670727 cites W2771546113 @default.
- W3048670727 cites W2789220724 @default.
- W3048670727 cites W2789638552 @default.
- W3048670727 cites W2790766340 @default.
- W3048670727 cites W2795006844 @default.
- W3048670727 cites W2908578648 @default.
- W3048670727 cites W2948303596 @default.
- W3048670727 cites W2966831864 @default.
- W3048670727 cites W2997119641 @default.
- W3048670727 doi "https://doi.org/10.1016/j.bspc.2020.102075" @default.
- W3048670727 hasPublicationYear "2020" @default.
- W3048670727 type Work @default.
- W3048670727 sameAs 3048670727 @default.
- W3048670727 citedByCount "17" @default.
- W3048670727 countsByYear W30486707272021 @default.
- W3048670727 countsByYear W30486707272022 @default.
- W3048670727 countsByYear W30486707272023 @default.
- W3048670727 crossrefType "journal-article" @default.
- W3048670727 hasAuthorship W3048670727A5012641373 @default.
- W3048670727 hasAuthorship W3048670727A5026827945 @default.
- W3048670727 hasAuthorship W3048670727A5051487932 @default.
- W3048670727 hasAuthorship W3048670727A5079034347 @default.
- W3048670727 hasAuthorship W3048670727A5080308075 @default.
- W3048670727 hasAuthorship W3048670727A5088302108 @default.
- W3048670727 hasConcept C105795698 @default.
- W3048670727 hasConcept C106301342 @default.
- W3048670727 hasConcept C121332964 @default.
- W3048670727 hasConcept C12267149 @default.
- W3048670727 hasConcept C138885662 @default.
- W3048670727 hasConcept C153180895 @default.
- W3048670727 hasConcept C154945302 @default.
- W3048670727 hasConcept C158525013 @default.
- W3048670727 hasConcept C158622935 @default.
- W3048670727 hasConcept C159877910 @default.
- W3048670727 hasConcept C33923547 @default.
- W3048670727 hasConcept C41008148 @default.
- W3048670727 hasConcept C41895202 @default.
- W3048670727 hasConcept C50644808 @default.
- W3048670727 hasConcept C52622490 @default.
- W3048670727 hasConcept C62520636 @default.
- W3048670727 hasConceptScore W3048670727C105795698 @default.
- W3048670727 hasConceptScore W3048670727C106301342 @default.
- W3048670727 hasConceptScore W3048670727C121332964 @default.
- W3048670727 hasConceptScore W3048670727C12267149 @default.
- W3048670727 hasConceptScore W3048670727C138885662 @default.
- W3048670727 hasConceptScore W3048670727C153180895 @default.
- W3048670727 hasConceptScore W3048670727C154945302 @default.
- W3048670727 hasConceptScore W3048670727C158525013 @default.
- W3048670727 hasConceptScore W3048670727C158622935 @default.
- W3048670727 hasConceptScore W3048670727C159877910 @default.
- W3048670727 hasConceptScore W3048670727C33923547 @default.
- W3048670727 hasConceptScore W3048670727C41008148 @default.
- W3048670727 hasConceptScore W3048670727C41895202 @default.
- W3048670727 hasConceptScore W3048670727C50644808 @default.
- W3048670727 hasConceptScore W3048670727C52622490 @default.
- W3048670727 hasConceptScore W3048670727C62520636 @default.
- W3048670727 hasFunder F4320321001 @default.
- W3048670727 hasFunder F4320335787 @default.
- W3048670727 hasLocation W30486707271 @default.
- W3048670727 hasOpenAccess W3048670727 @default.