Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048672365> ?p ?o ?g. }
- W3048672365 abstract "Abstract The incidence of type 2 diabetes (T2D) has been increasing globally and a growing body of evidence links type 2 diabetes with altered microbiota composition. Type 2 diabetes is preceded by a long pre-diabetic state characterized by changes in various metabolic parameters. We tested whether the gut microbiome could have predictive potential for T2D development during the healthy and pre-diabetic disease stages. We used prospective data of 608 well-phenotyped Finnish men collected from the population-based Metabolic Syndrome In Men (METSIM) study to build machine learning models for predicting continuous glucose and insulin measures in a shorter (1.5 year) and longer (4.5 year) period. Our results show that the inclusion of gut microbiome improves prediction accuracy for modelling T2D associated parameters such as glycosylated hemoglobin and insulin measures. We identified novel microbial biomarkers and described their effects on the predictions using interpretable machine learning techniques, which revealed complex linear and non-linear associations. Additionally, the modelling strategy carried out allowed us to compare the stability of model performances and biomarker selection, also revealing differences in short-term and long-term predictions. The identified microbiome biomarkers provide a predictive measure for various metabolic traits related to T2D, thus providing an additional parameter for personal risk assessment. Our work also highlights the need for robust modelling strategies and the value of interpretable machine learning. Importance Recent studies have shown a clear link between gut microbiota and type 2 diabetes. However, current results are based on cross-sectional studies that aim to determine the microbial dysbiosis when the disease is already prevalent. In order to consider microbiome as a factor in disease risk assessment, prospective studies are needed. Our study is the first study that assesses the gut microbiome as a predictive measure for several type 2 diabetes associated parameters in a longitudinal study setting. Our results revealed a number of novel microbial biomarkers that can improve the prediction accuracy for continuous insulin measures and glycosylated hemoglobin levels. These results make the prospect of using microbiome in personalized medicine promising." @default.
- W3048672365 created "2020-08-18" @default.
- W3048672365 creator A5000985487 @default.
- W3048672365 creator A5013519955 @default.
- W3048672365 creator A5015217861 @default.
- W3048672365 creator A5024741961 @default.
- W3048672365 creator A5047351497 @default.
- W3048672365 creator A5061865071 @default.
- W3048672365 creator A5061998537 @default.
- W3048672365 creator A5075407797 @default.
- W3048672365 creator A5077806373 @default.
- W3048672365 date "2020-08-14" @default.
- W3048672365 modified "2023-09-23" @default.
- W3048672365 title "Machine learning reveals time-varying microbial predictors with complex effects on glucose regulation" @default.
- W3048672365 cites W1574196797 @default.
- W3048672365 cites W1966921473 @default.
- W3048672365 cites W1989889539 @default.
- W3048672365 cites W1991705455 @default.
- W3048672365 cites W2023615726 @default.
- W3048672365 cites W2082266634 @default.
- W3048672365 cites W2089693716 @default.
- W3048672365 cites W2090187219 @default.
- W3048672365 cites W2101654035 @default.
- W3048672365 cites W2105329815 @default.
- W3048672365 cites W2107797783 @default.
- W3048672365 cites W2108628281 @default.
- W3048672365 cites W2127774996 @default.
- W3048672365 cites W2129128065 @default.
- W3048672365 cites W2133795831 @default.
- W3048672365 cites W2270564672 @default.
- W3048672365 cites W2340700016 @default.
- W3048672365 cites W2473355215 @default.
- W3048672365 cites W2473762402 @default.
- W3048672365 cites W2581490583 @default.
- W3048672365 cites W2607345063 @default.
- W3048672365 cites W2608146202 @default.
- W3048672365 cites W2787309163 @default.
- W3048672365 cites W2902497619 @default.
- W3048672365 cites W2904250115 @default.
- W3048672365 cites W2913914265 @default.
- W3048672365 cites W2922893172 @default.
- W3048672365 cites W2935171274 @default.
- W3048672365 cites W2948018512 @default.
- W3048672365 cites W2998420978 @default.
- W3048672365 cites W3014789907 @default.
- W3048672365 cites W3102027041 @default.
- W3048672365 cites W3105192099 @default.
- W3048672365 cites W4233004170 @default.
- W3048672365 doi "https://doi.org/10.1101/2020.08.13.250423" @default.
- W3048672365 hasPublicationYear "2020" @default.
- W3048672365 type Work @default.
- W3048672365 sameAs 3048672365 @default.
- W3048672365 citedByCount "0" @default.
- W3048672365 crossrefType "posted-content" @default.
- W3048672365 hasAuthorship W3048672365A5000985487 @default.
- W3048672365 hasAuthorship W3048672365A5013519955 @default.
- W3048672365 hasAuthorship W3048672365A5015217861 @default.
- W3048672365 hasAuthorship W3048672365A5024741961 @default.
- W3048672365 hasAuthorship W3048672365A5047351497 @default.
- W3048672365 hasAuthorship W3048672365A5061865071 @default.
- W3048672365 hasAuthorship W3048672365A5061998537 @default.
- W3048672365 hasAuthorship W3048672365A5075407797 @default.
- W3048672365 hasAuthorship W3048672365A5077806373 @default.
- W3048672365 hasBestOaLocation W30486723651 @default.
- W3048672365 hasConcept C119857082 @default.
- W3048672365 hasConcept C126322002 @default.
- W3048672365 hasConcept C134018914 @default.
- W3048672365 hasConcept C143121216 @default.
- W3048672365 hasConcept C154945302 @default.
- W3048672365 hasConcept C203014093 @default.
- W3048672365 hasConcept C2777180221 @default.
- W3048672365 hasConcept C2779134260 @default.
- W3048672365 hasConcept C2780578515 @default.
- W3048672365 hasConcept C2781197716 @default.
- W3048672365 hasConcept C2908647359 @default.
- W3048672365 hasConcept C41008148 @default.
- W3048672365 hasConcept C45804977 @default.
- W3048672365 hasConcept C539455810 @default.
- W3048672365 hasConcept C55493867 @default.
- W3048672365 hasConcept C555293320 @default.
- W3048672365 hasConcept C60644358 @default.
- W3048672365 hasConcept C71924100 @default.
- W3048672365 hasConcept C86803240 @default.
- W3048672365 hasConcept C99454951 @default.
- W3048672365 hasConceptScore W3048672365C119857082 @default.
- W3048672365 hasConceptScore W3048672365C126322002 @default.
- W3048672365 hasConceptScore W3048672365C134018914 @default.
- W3048672365 hasConceptScore W3048672365C143121216 @default.
- W3048672365 hasConceptScore W3048672365C154945302 @default.
- W3048672365 hasConceptScore W3048672365C203014093 @default.
- W3048672365 hasConceptScore W3048672365C2777180221 @default.
- W3048672365 hasConceptScore W3048672365C2779134260 @default.
- W3048672365 hasConceptScore W3048672365C2780578515 @default.
- W3048672365 hasConceptScore W3048672365C2781197716 @default.
- W3048672365 hasConceptScore W3048672365C2908647359 @default.
- W3048672365 hasConceptScore W3048672365C41008148 @default.
- W3048672365 hasConceptScore W3048672365C45804977 @default.
- W3048672365 hasConceptScore W3048672365C539455810 @default.
- W3048672365 hasConceptScore W3048672365C55493867 @default.
- W3048672365 hasConceptScore W3048672365C555293320 @default.