Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048683820> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3048683820 abstract "Recently, in many systems such as speech recognition and visual processing, deep learning has been widely implemented. In this research, we are exploring the possibility of using deep learning in community detection among the graph datasets. Graphs have gained growing traction in different fields, including social networks, information graphs, the recommender system, and also life sciences. In this paper, we propose a method of community detection clustering the nodes of various graph datasets. We cluster different category datasets that belong to affiliation networks, animal networks, human contact networks, human social networks, miscellaneous networks. The deep learning role in modeling the interaction between nodes in a network allows a revolution in the field of science relevant to graph network analysis. In this paper, we extend the gumbel softmax approach to graph network clustering. The experimental findings on specific graph datasets reveal that the new approach outperforms traditional clustering significantly, which strongly shows the efficacy of deep learning in graph community detection clustering. We do a series of experiments on our graph clustering algorithm, using various graph datasets: Zachary's karate club, Highland tribes, Train bombing, American Revolution, Dolphins, Zebra, Windsurfers, Les Misérables, Political books." @default.
- W3048683820 created "2020-08-18" @default.
- W3048683820 creator A5027167896 @default.
- W3048683820 creator A5052257805 @default.
- W3048683820 date "2020-08-11" @default.
- W3048683820 modified "2023-09-30" @default.
- W3048683820 title "Community Detection Clustering via Gumbel Softmax" @default.
- W3048683820 cites W131619556 @default.
- W3048683820 cites W1971421925 @default.
- W3048683820 cites W2012662151 @default.
- W3048683820 cites W2056897951 @default.
- W3048683820 cites W2095293504 @default.
- W3048683820 cites W2132202037 @default.
- W3048683820 cites W2433144350 @default.
- W3048683820 cites W2604942799 @default.
- W3048683820 cites W2793868694 @default.
- W3048683820 cites W2897979119 @default.
- W3048683820 cites W2949078036 @default.
- W3048683820 cites W2976859544 @default.
- W3048683820 cites W3032358910 @default.
- W3048683820 doi "https://doi.org/10.1007/s42979-020-00264-2" @default.
- W3048683820 hasPublicationYear "2020" @default.
- W3048683820 type Work @default.
- W3048683820 sameAs 3048683820 @default.
- W3048683820 citedByCount "10" @default.
- W3048683820 countsByYear W30486838202021 @default.
- W3048683820 countsByYear W30486838202023 @default.
- W3048683820 crossrefType "journal-article" @default.
- W3048683820 hasAuthorship W3048683820A5027167896 @default.
- W3048683820 hasAuthorship W3048683820A5052257805 @default.
- W3048683820 hasBestOaLocation W30486838201 @default.
- W3048683820 hasConcept C108583219 @default.
- W3048683820 hasConcept C119857082 @default.
- W3048683820 hasConcept C124101348 @default.
- W3048683820 hasConcept C132525143 @default.
- W3048683820 hasConcept C154945302 @default.
- W3048683820 hasConcept C188441871 @default.
- W3048683820 hasConcept C22047676 @default.
- W3048683820 hasConcept C41008148 @default.
- W3048683820 hasConcept C557471498 @default.
- W3048683820 hasConcept C73555534 @default.
- W3048683820 hasConcept C80444323 @default.
- W3048683820 hasConceptScore W3048683820C108583219 @default.
- W3048683820 hasConceptScore W3048683820C119857082 @default.
- W3048683820 hasConceptScore W3048683820C124101348 @default.
- W3048683820 hasConceptScore W3048683820C132525143 @default.
- W3048683820 hasConceptScore W3048683820C154945302 @default.
- W3048683820 hasConceptScore W3048683820C188441871 @default.
- W3048683820 hasConceptScore W3048683820C22047676 @default.
- W3048683820 hasConceptScore W3048683820C41008148 @default.
- W3048683820 hasConceptScore W3048683820C557471498 @default.
- W3048683820 hasConceptScore W3048683820C73555534 @default.
- W3048683820 hasConceptScore W3048683820C80444323 @default.
- W3048683820 hasIssue "5" @default.
- W3048683820 hasLocation W30486838201 @default.
- W3048683820 hasLocation W30486838202 @default.
- W3048683820 hasOpenAccess W3048683820 @default.
- W3048683820 hasPrimaryLocation W30486838201 @default.
- W3048683820 hasRelatedWork W3014300295 @default.
- W3048683820 hasRelatedWork W3164822677 @default.
- W3048683820 hasRelatedWork W4223943233 @default.
- W3048683820 hasRelatedWork W4225161397 @default.
- W3048683820 hasRelatedWork W4300427424 @default.
- W3048683820 hasRelatedWork W4312200629 @default.
- W3048683820 hasRelatedWork W4360585206 @default.
- W3048683820 hasRelatedWork W4364306694 @default.
- W3048683820 hasRelatedWork W4380075502 @default.
- W3048683820 hasRelatedWork W4380086463 @default.
- W3048683820 hasVolume "1" @default.
- W3048683820 isParatext "false" @default.
- W3048683820 isRetracted "false" @default.
- W3048683820 magId "3048683820" @default.
- W3048683820 workType "article" @default.