Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048687722> ?p ?o ?g. }
- W3048687722 endingPage "1263" @default.
- W3048687722 startingPage "1248" @default.
- W3048687722 abstract "Abstract Aim Our aim was to develop predictive statistical models for mapping the abundance of 18 waterfowl species at a pan‐Canadian level. We refined the previous generation of national waterfowl models by (a) developing new, more interpretable statistical models that (b) explicitly account for spatiotemporal variations in waterfowl abundance, while (c) testing for associations with an updated suite of habitat covariates. Location All of Canada, excluding the Northern Arctic ecozone. Methods Our response variables were annual species counts on 2,227 aerial‐survey segments over a period of 25 years (1990–2015). Combining machine‐learning and hierarchical regression modelling, we devised an innovative covariate selection strategy to select for each species the best subset of a panel of 232 candidate habitat covariates. With the selected covariates, we implemented hierarchical generalized linear models in a Bayesian framework, using the integrated nested Laplace approximation and stochastic partial differential equation approaches. Results On average, our models explained 47% of the observed variance for spatiotemporal predictions and 74% for temporally averaged spatial predictions. The 18 species models included 94 significant waterfowl‐habitat associations involving 42 distinct habitat covariates, with an average of 5.3 covariates per model. Covariates for forest attributes were the most represented in our models. The proportional biomass of Populus tremuloides was the most frequently selected covariate (10/94 associations in 10/18 species). Model predictions generated spatial and spatiotemporal maps of species abundances over almost all of Canada. Main conclusions We showed that it is possible to efficiently combine machine‐learning, variable selection and hierarchical Bayesian methods that exploit high‐dimensional covariate spaces. Our approach yielded powerful and easily interpretable species distribution models with very few covariates, while accounting for residual autocorrelation. Possible applications of the resulting models and maps include the development of biodiversity indicators, the evaluation and execution of conservation planning strategies, and ecosystem services monitoring." @default.
- W3048687722 created "2020-08-18" @default.
- W3048687722 creator A5002144349 @default.
- W3048687722 creator A5009141589 @default.
- W3048687722 creator A5045003350 @default.
- W3048687722 creator A5082436002 @default.
- W3048687722 date "2020-08-13" @default.
- W3048687722 modified "2023-09-30" @default.
- W3048687722 title "Predicting spatiotemporal abundance of breeding waterfowl across Canada: A Bayesian hierarchical modelling approach" @default.
- W3048687722 cites W134473611 @default.
- W3048687722 cites W1555708599 @default.
- W3048687722 cites W1585880090 @default.
- W3048687722 cites W1684281329 @default.
- W3048687722 cites W1747046542 @default.
- W3048687722 cites W1837874438 @default.
- W3048687722 cites W1933386641 @default.
- W3048687722 cites W1963970295 @default.
- W3048687722 cites W1964462118 @default.
- W3048687722 cites W1966743036 @default.
- W3048687722 cites W2006067788 @default.
- W3048687722 cites W2012327117 @default.
- W3048687722 cites W2018920486 @default.
- W3048687722 cites W2020722724 @default.
- W3048687722 cites W2023827576 @default.
- W3048687722 cites W2044245034 @default.
- W3048687722 cites W2045103429 @default.
- W3048687722 cites W2057387551 @default.
- W3048687722 cites W2057765075 @default.
- W3048687722 cites W2068211709 @default.
- W3048687722 cites W2068504926 @default.
- W3048687722 cites W2080390910 @default.
- W3048687722 cites W2081317529 @default.
- W3048687722 cites W2091308143 @default.
- W3048687722 cites W2092141482 @default.
- W3048687722 cites W2093516141 @default.
- W3048687722 cites W2097601813 @default.
- W3048687722 cites W2102071582 @default.
- W3048687722 cites W2111111567 @default.
- W3048687722 cites W2113910970 @default.
- W3048687722 cites W2127367934 @default.
- W3048687722 cites W2128322542 @default.
- W3048687722 cites W2129435498 @default.
- W3048687722 cites W2144898279 @default.
- W3048687722 cites W2152334756 @default.
- W3048687722 cites W2168213791 @default.
- W3048687722 cites W2332616550 @default.
- W3048687722 cites W2334744986 @default.
- W3048687722 cites W2343231218 @default.
- W3048687722 cites W2464471684 @default.
- W3048687722 cites W2474848796 @default.
- W3048687722 cites W2526438958 @default.
- W3048687722 cites W2536905615 @default.
- W3048687722 cites W2587372028 @default.
- W3048687722 cites W2765836721 @default.
- W3048687722 cites W2765928085 @default.
- W3048687722 cites W2770061999 @default.
- W3048687722 cites W2790376794 @default.
- W3048687722 cites W2793733313 @default.
- W3048687722 cites W2802622685 @default.
- W3048687722 cites W2910636272 @default.
- W3048687722 cites W2911448778 @default.
- W3048687722 cites W2912168678 @default.
- W3048687722 cites W2912734629 @default.
- W3048687722 cites W2916160768 @default.
- W3048687722 cites W2933060060 @default.
- W3048687722 cites W2938610884 @default.
- W3048687722 cites W2952636636 @default.
- W3048687722 cites W2982619951 @default.
- W3048687722 cites W347231809 @default.
- W3048687722 cites W4312862206 @default.
- W3048687722 cites W588132920 @default.
- W3048687722 doi "https://doi.org/10.1111/ddi.13129" @default.
- W3048687722 hasPublicationYear "2020" @default.
- W3048687722 type Work @default.
- W3048687722 sameAs 3048687722 @default.
- W3048687722 citedByCount "5" @default.
- W3048687722 countsByYear W30486877222020 @default.
- W3048687722 countsByYear W30486877222021 @default.
- W3048687722 countsByYear W30486877222022 @default.
- W3048687722 countsByYear W30486877222023 @default.
- W3048687722 crossrefType "journal-article" @default.
- W3048687722 hasAuthorship W3048687722A5002144349 @default.
- W3048687722 hasAuthorship W3048687722A5009141589 @default.
- W3048687722 hasAuthorship W3048687722A5045003350 @default.
- W3048687722 hasAuthorship W3048687722A5082436002 @default.
- W3048687722 hasBestOaLocation W30486877221 @default.
- W3048687722 hasConcept C105795698 @default.
- W3048687722 hasConcept C107673813 @default.
- W3048687722 hasConcept C119043178 @default.
- W3048687722 hasConcept C185933670 @default.
- W3048687722 hasConcept C18903297 @default.
- W3048687722 hasConcept C194648359 @default.
- W3048687722 hasConcept C205649164 @default.
- W3048687722 hasConcept C2776834261 @default.
- W3048687722 hasConcept C33923547 @default.
- W3048687722 hasConcept C41587187 @default.
- W3048687722 hasConcept C77077793 @default.
- W3048687722 hasConcept C86803240 @default.