Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048693722> ?p ?o ?g. }
- W3048693722 abstract "Food recognition has received more and more attention in the multimedia community for its various real-world applications, such as diet management and self-service restaurants. A large-scale ontology of food images is urgently needed for developing advanced large-scale food recognition algorithms, as well as for providing the benchmark dataset for such algorithms. To encourage further progress in food recognition, we introduce the dataset ISIA Food- 500 with 500 categories from the list in the Wikipedia and 399,726 images, a more comprehensive food dataset that surpasses existing popular benchmark datasets by category coverage and data volume. Furthermore, we propose a stacked global-local attention network, which consists of two sub-networks for food recognition. One subnetwork first utilizes hybrid spatial-channel attention to extract more discriminative features, and then aggregates these multi-scale discriminative features from multiple layers into global-level representation (e.g., texture and shape information about food). The other one generates attentional regions (e.g., ingredient relevant regions) from different regions via cascaded spatial transformers, and further aggregates these multi-scale regional features from different layers into local-level representation. These two types of features are finally fused as comprehensive representation for food recognition. Extensive experiments on ISIA Food-500 and other two popular benchmark datasets demonstrate the effectiveness of our proposed method, and thus can be considered as one strong baseline. The dataset, code and models can be found at http://123.57.42.89/FoodComputing-Dataset/ISIA-Food500.html." @default.
- W3048693722 created "2020-08-18" @default.
- W3048693722 creator A5009222019 @default.
- W3048693722 creator A5009845174 @default.
- W3048693722 creator A5023302316 @default.
- W3048693722 creator A5039322394 @default.
- W3048693722 creator A5040219819 @default.
- W3048693722 creator A5069204507 @default.
- W3048693722 creator A5085719285 @default.
- W3048693722 date "2020-08-12" @default.
- W3048693722 modified "2023-10-16" @default.
- W3048693722 title "ISIA Food-500: A Dataset for Large-Scale Food Recognition via Stacked Global-Local Attention Network" @default.
- W3048693722 cites W1030521295 @default.
- W3048693722 cites W1243714721 @default.
- W3048693722 cites W12634471 @default.
- W3048693722 cites W1496513042 @default.
- W3048693722 cites W2055527244 @default.
- W3048693722 cites W2096761622 @default.
- W3048693722 cites W2097117768 @default.
- W3048693722 cites W2108598243 @default.
- W3048693722 cites W2163969215 @default.
- W3048693722 cites W2194011657 @default.
- W3048693722 cites W2194775991 @default.
- W3048693722 cites W2206370378 @default.
- W3048693722 cites W2293499654 @default.
- W3048693722 cites W2296448531 @default.
- W3048693722 cites W2399439451 @default.
- W3048693722 cites W2526198870 @default.
- W3048693722 cites W2527643446 @default.
- W3048693722 cites W2530422462 @default.
- W3048693722 cites W2535808783 @default.
- W3048693722 cites W2550553598 @default.
- W3048693722 cites W2560804113 @default.
- W3048693722 cites W2583892095 @default.
- W3048693722 cites W2613010453 @default.
- W3048693722 cites W2617539414 @default.
- W3048693722 cites W2732026016 @default.
- W3048693722 cites W2737041163 @default.
- W3048693722 cites W2756716612 @default.
- W3048693722 cites W2766298634 @default.
- W3048693722 cites W2794393374 @default.
- W3048693722 cites W2798381792 @default.
- W3048693722 cites W2804935296 @default.
- W3048693722 cites W2891951760 @default.
- W3048693722 cites W2913012226 @default.
- W3048693722 cites W2953915809 @default.
- W3048693722 cites W2957307908 @default.
- W3048693722 cites W2961018736 @default.
- W3048693722 cites W2962901913 @default.
- W3048693722 cites W2962926870 @default.
- W3048693722 cites W2963217233 @default.
- W3048693722 cites W2963323244 @default.
- W3048693722 cites W2963420686 @default.
- W3048693722 cites W2963446712 @default.
- W3048693722 cites W2963556277 @default.
- W3048693722 cites W2964081807 @default.
- W3048693722 cites W2964137095 @default.
- W3048693722 cites W2966316879 @default.
- W3048693722 cites W2972610293 @default.
- W3048693722 cites W2980527125 @default.
- W3048693722 cites W2981631843 @default.
- W3048693722 cites W2981771452 @default.
- W3048693722 cites W300523764 @default.
- W3048693722 cites W3021798166 @default.
- W3048693722 cites W3099451302 @default.
- W3048693722 cites W3104226648 @default.
- W3048693722 cites W3105979354 @default.
- W3048693722 cites W603908379 @default.
- W3048693722 doi "https://doi.org/10.48550/arxiv.2008.05655" @default.
- W3048693722 hasPublicationYear "2020" @default.
- W3048693722 type Work @default.
- W3048693722 sameAs 3048693722 @default.
- W3048693722 citedByCount "1" @default.
- W3048693722 countsByYear W30486937222023 @default.
- W3048693722 crossrefType "posted-content" @default.
- W3048693722 hasAuthorship W3048693722A5009222019 @default.
- W3048693722 hasAuthorship W3048693722A5009845174 @default.
- W3048693722 hasAuthorship W3048693722A5023302316 @default.
- W3048693722 hasAuthorship W3048693722A5039322394 @default.
- W3048693722 hasAuthorship W3048693722A5040219819 @default.
- W3048693722 hasAuthorship W3048693722A5069204507 @default.
- W3048693722 hasAuthorship W3048693722A5085719285 @default.
- W3048693722 hasBestOaLocation W30486937221 @default.
- W3048693722 hasConcept C119857082 @default.
- W3048693722 hasConcept C124101348 @default.
- W3048693722 hasConcept C153180895 @default.
- W3048693722 hasConcept C154945302 @default.
- W3048693722 hasConcept C185798385 @default.
- W3048693722 hasConcept C205649164 @default.
- W3048693722 hasConcept C2778755073 @default.
- W3048693722 hasConcept C2780186347 @default.
- W3048693722 hasConcept C38652104 @default.
- W3048693722 hasConcept C41008148 @default.
- W3048693722 hasConcept C58640448 @default.
- W3048693722 hasConcept C97931131 @default.
- W3048693722 hasConceptScore W3048693722C119857082 @default.
- W3048693722 hasConceptScore W3048693722C124101348 @default.
- W3048693722 hasConceptScore W3048693722C153180895 @default.
- W3048693722 hasConceptScore W3048693722C154945302 @default.
- W3048693722 hasConceptScore W3048693722C185798385 @default.