Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048696125> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3048696125 abstract "Abstract Predicting the response to a particular drug for specific cancer, despite known genetic mutations, still remains a huge challenge in modern oncology and precision medicine. Today, prescribing a drug for a cancer patient is based on a doctor’s analysis of various articles and previous clinical trials; it is an extremely time-consuming process. We developed a machine learning classifier to automatically predict a drug given a carcinogenic gene mutation profile. Using the Breast Invasive Carcinoma Dataset from The Cancer Genome Atlas (TCGA), the method first selects features from mutated genes and then applies K-Fold, Decision Tree, Random Forest and Ensemble Learning classifiers to predict best drugs. Ensemble Learning yielded prediction accuracy of 66% on the test set in predicting the correct drug. To validate that the model is general-purpose, Lung Adenocarcinoma (LUAD) data and Colorectal Adenocarcinoma (COADREAD) data from TCGA was trained and tested, yielding prediction accuracies 50% and 66% respectively. The resulting accuracy indicates a direct correlation between prediction accuracy and cancer data size. More importantly, the results of LUAD and COADREAD show that the implemented model is general purpose as it is able to achieve similar results across multiple cancer types. We further verified the validity of the model by implementing it on patients with unclear recovery status from the COADREAD dataset. In every case, the model predicted a drug that was administered to each patient. This method will offer oncologists significant time-saving compared to their current approach of extensive background research, and offers personalized patient care for cancer patients." @default.
- W3048696125 created "2020-08-18" @default.
- W3048696125 creator A5038998788 @default.
- W3048696125 creator A5087718701 @default.
- W3048696125 date "2020-08-11" @default.
- W3048696125 modified "2023-10-15" @default.
- W3048696125 title "An Ensemble Learning Approach for Cancer Drug Prediction" @default.
- W3048696125 cites W1500572886 @default.
- W3048696125 cites W1991768549 @default.
- W3048696125 cites W2021100122 @default.
- W3048696125 cites W2100634952 @default.
- W3048696125 cites W2157875785 @default.
- W3048696125 cites W2170379523 @default.
- W3048696125 cites W2529586590 @default.
- W3048696125 cites W2884635850 @default.
- W3048696125 doi "https://doi.org/10.1101/2020.08.10.245142" @default.
- W3048696125 hasPublicationYear "2020" @default.
- W3048696125 type Work @default.
- W3048696125 sameAs 3048696125 @default.
- W3048696125 citedByCount "0" @default.
- W3048696125 crossrefType "posted-content" @default.
- W3048696125 hasAuthorship W3048696125A5038998788 @default.
- W3048696125 hasAuthorship W3048696125A5087718701 @default.
- W3048696125 hasBestOaLocation W30486961251 @default.
- W3048696125 hasConcept C119857082 @default.
- W3048696125 hasConcept C121608353 @default.
- W3048696125 hasConcept C126322002 @default.
- W3048696125 hasConcept C142724271 @default.
- W3048696125 hasConcept C154945302 @default.
- W3048696125 hasConcept C163763905 @default.
- W3048696125 hasConcept C169258074 @default.
- W3048696125 hasConcept C32220436 @default.
- W3048696125 hasConcept C41008148 @default.
- W3048696125 hasConcept C45942800 @default.
- W3048696125 hasConcept C526805850 @default.
- W3048696125 hasConcept C60644358 @default.
- W3048696125 hasConcept C71924100 @default.
- W3048696125 hasConcept C84525736 @default.
- W3048696125 hasConcept C86803240 @default.
- W3048696125 hasConcept C95623464 @default.
- W3048696125 hasConceptScore W3048696125C119857082 @default.
- W3048696125 hasConceptScore W3048696125C121608353 @default.
- W3048696125 hasConceptScore W3048696125C126322002 @default.
- W3048696125 hasConceptScore W3048696125C142724271 @default.
- W3048696125 hasConceptScore W3048696125C154945302 @default.
- W3048696125 hasConceptScore W3048696125C163763905 @default.
- W3048696125 hasConceptScore W3048696125C169258074 @default.
- W3048696125 hasConceptScore W3048696125C32220436 @default.
- W3048696125 hasConceptScore W3048696125C41008148 @default.
- W3048696125 hasConceptScore W3048696125C45942800 @default.
- W3048696125 hasConceptScore W3048696125C526805850 @default.
- W3048696125 hasConceptScore W3048696125C60644358 @default.
- W3048696125 hasConceptScore W3048696125C71924100 @default.
- W3048696125 hasConceptScore W3048696125C84525736 @default.
- W3048696125 hasConceptScore W3048696125C86803240 @default.
- W3048696125 hasConceptScore W3048696125C95623464 @default.
- W3048696125 hasLocation W30486961251 @default.
- W3048696125 hasOpenAccess W3048696125 @default.
- W3048696125 hasPrimaryLocation W30486961251 @default.
- W3048696125 hasRelatedWork W3170784702 @default.
- W3048696125 hasRelatedWork W4214855632 @default.
- W3048696125 hasRelatedWork W4249229055 @default.
- W3048696125 hasRelatedWork W4283016678 @default.
- W3048696125 hasRelatedWork W4293069612 @default.
- W3048696125 hasRelatedWork W4316087365 @default.
- W3048696125 hasRelatedWork W4318350883 @default.
- W3048696125 hasRelatedWork W4322744035 @default.
- W3048696125 hasRelatedWork W4363674755 @default.
- W3048696125 hasRelatedWork W4375930479 @default.
- W3048696125 isParatext "false" @default.
- W3048696125 isRetracted "false" @default.
- W3048696125 magId "3048696125" @default.
- W3048696125 workType "article" @default.