Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048697938> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3048697938 abstract "Longitudinal data frequently arises in biological, medical and epidemiological studies, and the main characteristic of it is that repeated measurements from the same subjects are correlated over time. This chapter considers the problem of simultaneous variable selection and estimation in the generalized semiparametric mixed effects model (GSMM) for longitudinal data. The GSMM is a natural extension of the semiparametric mixed effects model where accommodates response variables that follow distributions other than the normal, presents an arbitrary nonparametric smooth function to model the complicated time trend and account for the within subject correlation using the random effects. When a large number of variables are available in the data, it is of critical importance to select the best subset of variables in order to develop an informative yet parsimonious model. The challenge in analyzing longitudinal data when responses are non-normal is the difficulty to specify the full likelihood function. A standard approach to deal with this is to use the generalized estimating equations (GEE). We propose a penalization type of GEE while using regression spline to approximation the nonparametric component. This approach apply the penalty functions such as SCAD to the estimating equation objective function in order to simultaneously estimate parameters and select the important variables. The proposed penalized estimation technique involves the specification of the posterior distribution of the random effects, which cannot be evaluated in closed form. However, it is possible to approximate this posterior distribution by producing random draws from the distribution using a Metropolis algorithm, which does not require the specification of the posterior distribution. Moreover, we discuss how to select the regularization parameters and the model selection procedure for assessing the fits of candidate models is also addressed. For practical implementation, we adopt an appropriate iterative algorithm to select the significant variables and estimate the nonzero coefficient functions. Performance of the proposed penalization technique is analyzed through a simulation study along with the analysis of HIV data." @default.
- W3048697938 created "2020-08-18" @default.
- W3048697938 creator A5031079523 @default.
- W3048697938 creator A5066559252 @default.
- W3048697938 date "2020-01-01" @default.
- W3048697938 modified "2023-09-25" @default.
- W3048697938 title "Simultaneous Variable Selection and Estimation in Generalized Semiparametric Mixed Effects Modeling of Longitudinal Data" @default.
- W3048697938 cites W1892050824 @default.
- W3048697938 cites W1920844341 @default.
- W3048697938 cites W1963927438 @default.
- W3048697938 cites W1972165087 @default.
- W3048697938 cites W1974875084 @default.
- W3048697938 cites W1980092349 @default.
- W3048697938 cites W1983371092 @default.
- W3048697938 cites W1990943797 @default.
- W3048697938 cites W1992410926 @default.
- W3048697938 cites W1997921097 @default.
- W3048697938 cites W1999975842 @default.
- W3048697938 cites W2002306002 @default.
- W3048697938 cites W2019579897 @default.
- W3048697938 cites W2020925091 @default.
- W3048697938 cites W2054358221 @default.
- W3048697938 cites W2055275378 @default.
- W3048697938 cites W2056230503 @default.
- W3048697938 cites W2056721614 @default.
- W3048697938 cites W2074682976 @default.
- W3048697938 cites W2077192207 @default.
- W3048697938 cites W2079775628 @default.
- W3048697938 cites W2082246284 @default.
- W3048697938 cites W2109395830 @default.
- W3048697938 cites W2110776215 @default.
- W3048697938 cites W2111676283 @default.
- W3048697938 cites W2115190665 @default.
- W3048697938 cites W2117180217 @default.
- W3048697938 cites W2122825543 @default.
- W3048697938 cites W2132174411 @default.
- W3048697938 cites W2149811417 @default.
- W3048697938 cites W2149860264 @default.
- W3048697938 cites W2153531124 @default.
- W3048697938 cites W2168175751 @default.
- W3048697938 doi "https://doi.org/10.1007/978-3-030-42196-0_19" @default.
- W3048697938 hasPublicationYear "2020" @default.
- W3048697938 type Work @default.
- W3048697938 sameAs 3048697938 @default.
- W3048697938 citedByCount "1" @default.
- W3048697938 countsByYear W30486979382021 @default.
- W3048697938 crossrefType "book-chapter" @default.
- W3048697938 hasAuthorship W3048697938A5031079523 @default.
- W3048697938 hasAuthorship W3048697938A5066559252 @default.
- W3048697938 hasConcept C102366305 @default.
- W3048697938 hasConcept C105795698 @default.
- W3048697938 hasConcept C126322002 @default.
- W3048697938 hasConcept C149782125 @default.
- W3048697938 hasConcept C16012445 @default.
- W3048697938 hasConcept C168743327 @default.
- W3048697938 hasConcept C185429906 @default.
- W3048697938 hasConcept C19539793 @default.
- W3048697938 hasConcept C204016326 @default.
- W3048697938 hasConcept C27403532 @default.
- W3048697938 hasConcept C28826006 @default.
- W3048697938 hasConcept C33923547 @default.
- W3048697938 hasConcept C71924100 @default.
- W3048697938 hasConcept C78297888 @default.
- W3048697938 hasConcept C93959086 @default.
- W3048697938 hasConcept C95190672 @default.
- W3048697938 hasConceptScore W3048697938C102366305 @default.
- W3048697938 hasConceptScore W3048697938C105795698 @default.
- W3048697938 hasConceptScore W3048697938C126322002 @default.
- W3048697938 hasConceptScore W3048697938C149782125 @default.
- W3048697938 hasConceptScore W3048697938C16012445 @default.
- W3048697938 hasConceptScore W3048697938C168743327 @default.
- W3048697938 hasConceptScore W3048697938C185429906 @default.
- W3048697938 hasConceptScore W3048697938C19539793 @default.
- W3048697938 hasConceptScore W3048697938C204016326 @default.
- W3048697938 hasConceptScore W3048697938C27403532 @default.
- W3048697938 hasConceptScore W3048697938C28826006 @default.
- W3048697938 hasConceptScore W3048697938C33923547 @default.
- W3048697938 hasConceptScore W3048697938C71924100 @default.
- W3048697938 hasConceptScore W3048697938C78297888 @default.
- W3048697938 hasConceptScore W3048697938C93959086 @default.
- W3048697938 hasConceptScore W3048697938C95190672 @default.
- W3048697938 hasLocation W30486979381 @default.
- W3048697938 hasOpenAccess W3048697938 @default.
- W3048697938 hasPrimaryLocation W30486979381 @default.
- W3048697938 hasRelatedWork W12271246 @default.
- W3048697938 hasRelatedWork W16324593 @default.
- W3048697938 hasRelatedWork W194299 @default.
- W3048697938 hasRelatedWork W31670354 @default.
- W3048697938 hasRelatedWork W35265094 @default.
- W3048697938 hasRelatedWork W39896467 @default.
- W3048697938 hasRelatedWork W46383130 @default.
- W3048697938 hasRelatedWork W52099130 @default.
- W3048697938 hasRelatedWork W54818387 @default.
- W3048697938 hasRelatedWork W681506 @default.
- W3048697938 isParatext "false" @default.
- W3048697938 isRetracted "false" @default.
- W3048697938 magId "3048697938" @default.
- W3048697938 workType "book-chapter" @default.