Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048702144> ?p ?o ?g. }
- W3048702144 endingPage "112017" @default.
- W3048702144 startingPage "112017" @default.
- W3048702144 abstract "Forest canopies act as intermediaries in radiation energy exchange between the atmosphere and the snow surface. The size, location and distribution of forest discontinuities are important controls on forest shortwave radiation transmission and subsequent snow surface shading and radiation energy exchange between the atmosphere and the canopy, but challenges arise when accounting for these vegetation characteristics at large spatial scales. Airborne LiDAR datasets contain detailed information about canopy structure across large spatial scales which can be exploited within 2D transmission models. However, airborne LiDAR data typically does not resolve lower canopy elements, leading to unrealistic depictions of individual trees. We present a methodology to enhance airborne LiDAR data by calculating additional trunk and branch points based on segmentation of a canopy height model, allowing more accurate estimates of canopy shortwave transmissivity. To demonstrate this, we deployed a computationally efficient 2D radiation transfer modelling framework that calculates direct and diffuse radiation from a set of distributed synthetic hemispherical images. The model can predict incoming direct and diffuse solar radiation at the snow surface at high spatial (meter-scale) and temporal (minute-scale) resolutions. Comparison between synthetic and real hemispherical photographs showed that synthetic images, if based on enhanced LiDAR data, featured canopy and individual tree crowns that were much denser than the original LiDAR portrays, improving the representation of vegetation structure especially within dense environments and along canopy edges. Corresponding modelled total shortwave radiation matched well with spatially gridded measurements from a moving pyranometer at two sites, where model RMSE was reduced to 59 and 29 W m−2 from 181 and 138 W m−2, respectively, compared to the same transmission model with the original LiDAR data. Maps of snow surface shading patterns corresponded well to those seen in aerial photographs, showing the enhanced LiDAR data can be used to solve complex spatiotemporal patterns of sub-canopy incoming radiation. This work demonstrates that canopy structure information from the lower canopy is an important aspect for accurate radiation transfer modelling, and methods presented here can successfully mitigate problems inherent in many airborne LiDAR datasets to improve spatially distributed estimates of sub-canopy shortwave radiation." @default.
- W3048702144 created "2020-08-18" @default.
- W3048702144 creator A5003718432 @default.
- W3048702144 creator A5016392895 @default.
- W3048702144 creator A5069126702 @default.
- W3048702144 creator A5088323296 @default.
- W3048702144 date "2020-11-01" @default.
- W3048702144 modified "2023-10-17" @default.
- W3048702144 title "Enhancing airborne LiDAR data for improved forest structure representation in shortwave transmission models" @default.
- W3048702144 cites W1822483748 @default.
- W3048702144 cites W1923033816 @default.
- W3048702144 cites W1972923480 @default.
- W3048702144 cites W1978867303 @default.
- W3048702144 cites W1980718009 @default.
- W3048702144 cites W1982215158 @default.
- W3048702144 cites W1997165668 @default.
- W3048702144 cites W1999092726 @default.
- W3048702144 cites W2002692686 @default.
- W3048702144 cites W2003873019 @default.
- W3048702144 cites W2005107454 @default.
- W3048702144 cites W2005827599 @default.
- W3048702144 cites W2011898774 @default.
- W3048702144 cites W2024684186 @default.
- W3048702144 cites W2036061400 @default.
- W3048702144 cites W2038282202 @default.
- W3048702144 cites W2053119218 @default.
- W3048702144 cites W2054347428 @default.
- W3048702144 cites W2061063031 @default.
- W3048702144 cites W2089779916 @default.
- W3048702144 cites W2091814146 @default.
- W3048702144 cites W2094087960 @default.
- W3048702144 cites W2099792467 @default.
- W3048702144 cites W2102096999 @default.
- W3048702144 cites W2109039109 @default.
- W3048702144 cites W2113488626 @default.
- W3048702144 cites W2113927579 @default.
- W3048702144 cites W2133557877 @default.
- W3048702144 cites W2141379520 @default.
- W3048702144 cites W2153598242 @default.
- W3048702144 cites W2163929020 @default.
- W3048702144 cites W2166242029 @default.
- W3048702144 cites W2169278316 @default.
- W3048702144 cites W2313448762 @default.
- W3048702144 cites W2315994349 @default.
- W3048702144 cites W2462610241 @default.
- W3048702144 cites W2605994563 @default.
- W3048702144 cites W2625614238 @default.
- W3048702144 cites W2736175644 @default.
- W3048702144 cites W2792645348 @default.
- W3048702144 cites W2896016035 @default.
- W3048702144 cites W2909161788 @default.
- W3048702144 cites W2919421087 @default.
- W3048702144 cites W2946551301 @default.
- W3048702144 cites W2966696808 @default.
- W3048702144 cites W3004114333 @default.
- W3048702144 doi "https://doi.org/10.1016/j.rse.2020.112017" @default.
- W3048702144 hasPublicationYear "2020" @default.
- W3048702144 type Work @default.
- W3048702144 sameAs 3048702144 @default.
- W3048702144 citedByCount "13" @default.
- W3048702144 countsByYear W30487021442020 @default.
- W3048702144 countsByYear W30487021442021 @default.
- W3048702144 countsByYear W30487021442022 @default.
- W3048702144 countsByYear W30487021442023 @default.
- W3048702144 crossrefType "journal-article" @default.
- W3048702144 hasAuthorship W3048702144A5003718432 @default.
- W3048702144 hasAuthorship W3048702144A5016392895 @default.
- W3048702144 hasAuthorship W3048702144A5069126702 @default.
- W3048702144 hasAuthorship W3048702144A5088323296 @default.
- W3048702144 hasBestOaLocation W30487021442 @default.
- W3048702144 hasConcept C101000010 @default.
- W3048702144 hasConcept C120665830 @default.
- W3048702144 hasConcept C121332964 @default.
- W3048702144 hasConcept C153294291 @default.
- W3048702144 hasConcept C153385146 @default.
- W3048702144 hasConcept C166957645 @default.
- W3048702144 hasConcept C19369268 @default.
- W3048702144 hasConcept C197046000 @default.
- W3048702144 hasConcept C205649164 @default.
- W3048702144 hasConcept C2776272892 @default.
- W3048702144 hasConcept C39432304 @default.
- W3048702144 hasConcept C39807119 @default.
- W3048702144 hasConcept C51399673 @default.
- W3048702144 hasConcept C62649853 @default.
- W3048702144 hasConcept C74902906 @default.
- W3048702144 hasConceptScore W3048702144C101000010 @default.
- W3048702144 hasConceptScore W3048702144C120665830 @default.
- W3048702144 hasConceptScore W3048702144C121332964 @default.
- W3048702144 hasConceptScore W3048702144C153294291 @default.
- W3048702144 hasConceptScore W3048702144C153385146 @default.
- W3048702144 hasConceptScore W3048702144C166957645 @default.
- W3048702144 hasConceptScore W3048702144C19369268 @default.
- W3048702144 hasConceptScore W3048702144C197046000 @default.
- W3048702144 hasConceptScore W3048702144C205649164 @default.
- W3048702144 hasConceptScore W3048702144C2776272892 @default.
- W3048702144 hasConceptScore W3048702144C39432304 @default.
- W3048702144 hasConceptScore W3048702144C39807119 @default.
- W3048702144 hasConceptScore W3048702144C51399673 @default.