Matches in SemOpenAlex for { <https://semopenalex.org/work/W3048702918> ?p ?o ?g. }
- W3048702918 abstract "Harnessing the power of modern multi-GPU architectures, we present a massively parallel simulation system based on the Material Point Method (MPM) for simulating physical behaviors of materials undergoing complex topological changes, self-collision, and large deformations. Our system makes three critical contributions. First, we introduce a new particle data structure that promotes coalesced memory access patterns on the GPU and eliminates the need for complex atomic operations on the memory hierarchy when writing particle data to the grid. Second, we propose a kernel fusion approach using a new Grid-to-Particles-to-Grid ( G2P2G ) scheme, which efficiently reduces GPU kernel launches, improves latency, and significantly reduces the amount of global memory needed to store particle data. Finally, we introduce optimized algorithmic designs that allow for efficient sparse grids in a shared memory context, enabling us to best utilize modern multi-GPU computational platforms for hybrid Lagrangian-Eulerian computational patterns. We demonstrate the effectiveness of our method with extensive benchmarks, evaluations, and dynamic simulations with elastoplasticity, granular media, and fluid dynamics. In comparisons against an open-source and heavily optimized CPU-based MPM codebase [Fang et al. 2019] on an elastic sphere colliding scene with particle counts ranging from 5 to 40 million, our GPU MPM achieves over 100x per-time-step speedup on a workstation with an Intel 8086K CPU and a single Quadro P6000 GPU, exposing exciting possibilities for future MPM simulations in computer graphics and computational science. Moreover, compared to the state-of-the-art GPU MPM method [Hu et al. 2019a], we not only achieve 2x acceleration on a single GPU but our kernel fusion strategy and Array-of-Structs-of-Array ( AoSoA ) data structure design also generalizes to multi-GPU systems. Our multi-GPU MPM exhibits near-perfect weak and strong scaling with 4 GPUs, enabling performant and large-scale simulations on a 1024 3 grid with close to 100 million particles with less than 4 minutes per frame on a single 4-GPU workstation and 134 million particles with less than 1 minute per frame on an 8-GPU workstation." @default.
- W3048702918 created "2020-08-18" @default.
- W3048702918 creator A5004194238 @default.
- W3048702918 creator A5016117432 @default.
- W3048702918 creator A5029734766 @default.
- W3048702918 creator A5034228010 @default.
- W3048702918 creator A5039797018 @default.
- W3048702918 creator A5046020100 @default.
- W3048702918 creator A5051255725 @default.
- W3048702918 creator A5060121865 @default.
- W3048702918 creator A5068163735 @default.
- W3048702918 creator A5087311970 @default.
- W3048702918 date "2020-08-12" @default.
- W3048702918 modified "2023-09-25" @default.
- W3048702918 title "A massively parallel and scalable multi-GPU material point method" @default.
- W3048702918 cites W1988888548 @default.
- W3048702918 cites W1990255291 @default.
- W3048702918 cites W1994439127 @default.
- W3048702918 cites W2022566626 @default.
- W3048702918 cites W2029315739 @default.
- W3048702918 cites W2032147135 @default.
- W3048702918 cites W2078794610 @default.
- W3048702918 cites W2091674402 @default.
- W3048702918 cites W2093578423 @default.
- W3048702918 cites W2112667144 @default.
- W3048702918 cites W2112961542 @default.
- W3048702918 cites W2120934608 @default.
- W3048702918 cites W2126195192 @default.
- W3048702918 cites W2128943711 @default.
- W3048702918 cites W2139238466 @default.
- W3048702918 cites W2177272717 @default.
- W3048702918 cites W2278868814 @default.
- W3048702918 cites W2377632039 @default.
- W3048702918 cites W2379106294 @default.
- W3048702918 cites W2465888780 @default.
- W3048702918 cites W2467598065 @default.
- W3048702918 cites W2551533682 @default.
- W3048702918 cites W2736344262 @default.
- W3048702918 cites W2738928398 @default.
- W3048702918 cites W2739405427 @default.
- W3048702918 cites W2762756599 @default.
- W3048702918 cites W2766346346 @default.
- W3048702918 cites W2769733039 @default.
- W3048702918 cites W2808883295 @default.
- W3048702918 cites W2809724354 @default.
- W3048702918 cites W2810216202 @default.
- W3048702918 cites W2810605722 @default.
- W3048702918 cites W2810873357 @default.
- W3048702918 cites W2887575682 @default.
- W3048702918 cites W2902392872 @default.
- W3048702918 cites W2902991331 @default.
- W3048702918 cites W2903134811 @default.
- W3048702918 cites W2954903492 @default.
- W3048702918 cites W2958142095 @default.
- W3048702918 cites W2959139145 @default.
- W3048702918 cites W2959624262 @default.
- W3048702918 cites W2961288714 @default.
- W3048702918 cites W2963856426 @default.
- W3048702918 cites W2964873565 @default.
- W3048702918 cites W2977371611 @default.
- W3048702918 cites W2985293775 @default.
- W3048702918 cites W3109377857 @default.
- W3048702918 cites W3138058008 @default.
- W3048702918 cites W3156948055 @default.
- W3048702918 doi "https://doi.org/10.1145/3386569.3392442" @default.
- W3048702918 hasPublicationYear "2020" @default.
- W3048702918 type Work @default.
- W3048702918 sameAs 3048702918 @default.
- W3048702918 citedByCount "28" @default.
- W3048702918 countsByYear W30487029182020 @default.
- W3048702918 countsByYear W30487029182021 @default.
- W3048702918 countsByYear W30487029182022 @default.
- W3048702918 countsByYear W30487029182023 @default.
- W3048702918 crossrefType "journal-article" @default.
- W3048702918 hasAuthorship W3048702918A5004194238 @default.
- W3048702918 hasAuthorship W3048702918A5016117432 @default.
- W3048702918 hasAuthorship W3048702918A5029734766 @default.
- W3048702918 hasAuthorship W3048702918A5034228010 @default.
- W3048702918 hasAuthorship W3048702918A5039797018 @default.
- W3048702918 hasAuthorship W3048702918A5046020100 @default.
- W3048702918 hasAuthorship W3048702918A5051255725 @default.
- W3048702918 hasAuthorship W3048702918A5060121865 @default.
- W3048702918 hasAuthorship W3048702918A5068163735 @default.
- W3048702918 hasAuthorship W3048702918A5087311970 @default.
- W3048702918 hasBestOaLocation W30487029182 @default.
- W3048702918 hasConcept C114614502 @default.
- W3048702918 hasConcept C133875982 @default.
- W3048702918 hasConcept C173608175 @default.
- W3048702918 hasConcept C187691185 @default.
- W3048702918 hasConcept C190475519 @default.
- W3048702918 hasConcept C2524010 @default.
- W3048702918 hasConcept C2778119891 @default.
- W3048702918 hasConcept C2779851693 @default.
- W3048702918 hasConcept C33923547 @default.
- W3048702918 hasConcept C41008148 @default.
- W3048702918 hasConcept C459310 @default.
- W3048702918 hasConcept C48044578 @default.
- W3048702918 hasConcept C68339613 @default.
- W3048702918 hasConcept C74193536 @default.
- W3048702918 hasConcept C77088390 @default.